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Preface

This volume contains the proceedings of the 1st International Workshop on
Comparative Empirical Evaluation of Reasoning Systems (COMPARE 2012),
held on June 30th, 2012 in Manchester, UK, in conjunction with the International
Joint Conference on Automated Reasoning (IJCAR).

It has become accepted wisdom that regular comparative evaluation of rea-
soning systems helps to focus research, identify relevant problems, bolster devel-
opment, and advance the field in general. Benchmark libraries and competitions
are two popular approaches to do so. The number of competitions has been
rapidly increasing lately. At the moment, we are aware of about a dozen bench-
mark collections and two dozen competitions for reasoning systems of different
kinds. It is time to compare notes.

What are the proper empirical approaches and criteria for effective compar-
ative evaluation of reasoning systems? What are the appropriate hardware and
software environments? How to assess usability of reasoning systems, and in par-
ticular of systems that are used interactively? How to design, acquire, structure,
publish, and use benchmarks and problem collections?

The aim of the workshop was to advance comparative empirical evaluation
by bringing together current and future competition organizers and participants,
maintainers of benchmark collections, as well as practitioners and the general
scientific public interested in the topic.

We wish to sincerely thank all the authors who submitted their work for
consideration. All submitted papers were peer-reviewed, and we would like to
thank the Program Committee members as well as the additional referees for
their great effort and professional work in the review and selection process. Their
names are listed on the following pages. We are deeply grateful to our invited
speakers—Leonardo de Moura (Microsoft Research) and Cesare Tinelli (Univer-
sity of Iowa)—for accepting the invitation to address the workshop participants.
We thank Sarah Grebing for her help in organizing the workshop and compiling
this volume.

June 2012 Vladimir Klebanov
Bernhard Beckert

Armin Biere
Geoff Sutcliffe
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Regression Tests and the Inventor’s Dilemma

Leonardo de Moura

Microsoft Research, Redmond

Reasoning systems are extensively used at Microsoft. They are used in test
case generation, model-based testing, static program analysis, program verifica-
tion, analysis of firewall policies, program synthesis, geometric problem solving,
to cite a few. Reasoning systems are complicated pieces of software, which are
very often trying to attack undecidable problems. In this talk, we describe dif-
ferent systems used at Microsoft, how they are evaluated, and challenges upon
releasing new versions of successful systems. All systems share the same basic
evaluation technique: regression tests. They also face the same challenge: the
inventor’s dilemma. In all these systems, progress is not monotonic. The lat-
est version of the Z3 theorem prover may enable users to automatically prove
many new theorems, provide new features and performance improvements, but
it inevitably also fails to prove theorems proved by the previous version. More
importantly, we very often have to give up some of our progress to be able to
reach the next plateau. We conclude describing how we have been addressing
this challenge in the Z3 project.
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Introducing StarExec: a Cross-Community
Infrastructure for Logic Solving?

Aaron Stump1, Geoff Sutcliffe2, and Cesare Tinelli1

1 Department of Computer Science
The University of Iowa

2 Department of Computer Science
University of Miami

Ongoing breakthroughs in a number of fields depend on continuing advances
in the development of high-performance automated reasoning tools, such as SAT
solvers, SMT solvers, theorem provers, constraint solvers, rewrite systems, model
checkers, and so on. Typically, application problems are translated into (possibly
large and complex) formulas for these tools to reason about. Different tradeoffs
between linguistic expressiveness and the difficulty of the original problems have
led to the adoption of different reasoning approaches and the use of different log-
ics to encode those problems. Solver communities, formed around these different
logics, have developed their own research infrastructures to encourage innova-
tion and ease the adoption of their solver technology. Examples include stan-
dard formats for the logic problems, libraries of benchmark problems, and solver
competitions to spur innovation and further advances. So far, these different in-
frastructures have been developed separately in the various logic communities,
at significant and largely duplicated cost in development effort, equipment and
support.

StarExec, currently under development, is a solver execution and benchmark
library service aimed at facilitating the experimental evaluation of automated
reasoning tools. It will provide a single piece of storage and computing infras-
tructure to all logic solving communities, reducing the duplication of effort and
waste of resources. StarExec will provide a custom web interface and web ser-
vices running on a cluster of 150-200 compute nodes, with several terabytes
of networked disk space. The service will allow community organizers to store,
manage and make available benchmark libraries, competition organizers to run
competitions, and individual community members to run comparative evalua-
tions of automated reasoning tools on benchmark problems. The StarExec web
site will provide facilities to upload and organize benchmarks, browse and query
the stored benchmark libraries, view and analyze execution results and statistics,
as well as access various data programmatically through a web API.

This talk gives an overview of StarExec, describing its main design, com-
ponents, functionality, and usage policies, and discusses its current status and
development plan.

? Work made possible in large part by the generous support of the National Science
Foundation through grants #0958160, 0957438, 1058748, and 1058925.
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Evaluating the Usability of
Interactive Verification Systems

Bernhard Beckert1 and Sarah Grebing2

1 Karlsruhe Institute of Technology (KIT)
beckert@kit.edu

2 University of Koblenz-Landau
sarahgrebing@uni-koblenz.de

Abstract. Usability is an important criterion for measuring and com-
paring the quality of software systems. It is particularly important for
interactive verification systems, which heavily rely on user support to
find proofs and that require various complex user interactions.
In this paper, we present a questionnaire for evaluating interactive ver-
ification systems based on Green and Petre’s Cognitive Dimensions. In
a first case study, we have used this questionnaire to evaluate our own
tool, the KeY System. The lessons learned from this evaluation relate
(1) to the usability of the KeY System and interactive verification sys-
tems in general and also (2) gave us insights on how to perform usability
evaluations for interactive verification systems.

1 Introduction

Overview For the acceptance, success, and widespread use of software its us-
ability plays a central role. It is an important criterion for measuring and com-
paring the quality of software systems. And usability is particularly important
for interactive verification systems, which heavily rely on user support to find
proofs and that require various complex user interactions. However, measuring
usability has so far not been the focus of developers of verification systems –
instead the community generally concentrates on measuring performance of sys-
tems without evaluating to what degree usability effects a system’s efficiency.

In general, there are a variety of methods for integrating usability in the de-
velopment process. This includes analysis methods such as task and user analysis
at the planning stage, testing methods where users are monitored while using
a system (or a prototype), but also evaluation methods such as questionnaires
and interviews [1, 2].

In this paper, we discuss and present a questionnaire for evaluating interac-
tive verification systems based on Green and Petre’s Cognitive Dimensions [3].
In a first case study, we have used this questionnaire to evaluate our own tool,
the KeY System. The lessons learned from this evaluation relate (1) to the us-
ability of the KeY System and interactive verification systems in general and also
(2) to insights on how to perform usability evaluations for interactive verification
systems, where such an evaluation can form a basis for improving usability.
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Though usability should be taken into account from the beginning of the
software life cycle, in this work we concentrate on evaluating the usability of an
already existing tool.

Related Work As said above, there is not a lot of work reported on evaluating
usability of verification systems or deduction systems in general. A noteworthy
exception is Kadoda et al.’s list of desirable features for educational theorem
provers [4], which resulted from an evaluation of proof systems based on a ques-
tionnaire using Green and Petre’s Cognitive Dimensions’ framework.

Griffioen and Huisman [5] present a comparison of PVS and Isabelle from
a user’s perspective. They propose to have something similar to consumer re-
ports for reasoning tools, which can help users choosing the right tool for their
application. In this work the two proof tools Isabelle and PVS are compared
with respect to their logic, specification language, proof commands, strategies,
and the availability of decision procedures, as well as system architecture, proof
manager, and user interface. In addition, the user manuals and support tool is
taken into account. At the end, the authors give a list of criteria on which the
tools have been tested. The lessons we have learned from our evaluation mainly
coincide with the aspects given by the authors.

Aitken and Melham analyze errors in interactive proof attempts [6]. They
propose the error taxonomy by Zapf et al. as a usability metric. For this the
authors have done two user studies with the interactive theorem provers Isabelle
and HOL. Experienced users of both systems had to solve a task and the user’s
interactions were recorded. User errors where then categorized into three types:
logical errors, interaction errors, and syntax errors. The authors draw conclusions
about the usability of interactive theorem provers. Based on their evaluation, the
authors provide some practical advice for the design of proof environments and
the user interface of interactive theorem provers.

There are also attempts to improve the user interface of theorem provers,
which plays a central role for usability – besides other factors such as the system’s
response to the user, the design of program logics and specification languages,
system documentation etc. For example, Bertot and Théry [7] propose ways
to build a user-friendly interface for theorem provers, which include concepts
such as “proof-by-pointing”, “script management” and “textual explanation of
proofs”. The user interfaces of particular deduction systems have been evaluated
in a number of papers, for example, that of Isabelle [8], that of PVS [9], and
that of KIV [10].

There are various competitions (such as CASC, SMT-COMP and SAT),
where the performance of automated deduction systems is compared. In re-
cent years, attempts to compare interactive verification systems have changed
from comparing just the effectiveness (counting the number of problems that
can be solved in arbitrary time) to the comparison of effectiveness and efficiency

Evaluating the Usability of Interactive Verification Systems
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(counting how many problems can be solved in limited time). Competitions of
that form where held at VSTTE 20103 [11], VSTTE 20124, and FoVeOOS 20115.

Structure of this Paper This paper is structured as follows: Section 2 gives
an overview of usability and its evaluation in general. Section 3 briefly describes
the KeY System, which we used for our evaluation case study. In Section 4,
we present our questionnaire and its design; and in Section 5 we discuss the
recruitment of participants for the evaluation. Section 6 contains the results of
the evaluation and the lessons learned on the usability of KeY, the usability of
verification systems in general, and on the design of the questionnaire. Finally,
in Section 7 we draw conclusions and discuss future work.

2 Usability of Software

Software usability is mostly investigated as part of research in the area of human-
computer interaction. However, besides a well-designed user interface, other as-
pects of a system – e.g., good documentation – play an important role for us-
ability.

According to ISO 9241 Part 11 [12], usability is defined as the “extent to
which a product can be used by specified users to achieve specified goals with
(i) effectiveness, (ii) efficiency, and (iii) satisfaction in a specified context of
use.” The standard also defines the three terms effectiveness, efficiency, and
satisfaction:

Effectiveness: Accuracy and completeness with which users achieve specified
goals.

Efficiency: Resources expended in relation to the accuracy and completeness
with which users achieve goals

Satisfaction: Freedom from discomfort and positive attitudes towards the use of
the product.

Usability is also often defined via five attributes (1) learnability, (2) efficiency,
(3) user retention over time, (4) error rate, and (5) satisfaction. Depending on
the system, these attributes differ in relevance and may also directly affect each
other. For example, high efficiency often leads to reduced learnability (as, for
example, key shortcuts need to be learned) [2].

There are standardized questionnaires and evaluation methods for usability
that have been widely accepted. One such method is the Software Usability Mea-
surement Inventory (SUMI)6. The SUMI questions are statements with which an
interviewed user can “agree” or “disagree” (there is also an “undecided” option).

3 http://www.macs.hw.ac.uk/vstte10/Competition.html
4 https://sites.google.com/site/vstte2012/compet
5 http://foveoos2011.cost-ic0701.org/verification-competition
6 http://sumi.ucc.ie

B. Beckert, S. Grebing
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Besides an introductory text about how to answer the statements, the SUMI
questionnaire consists of a main part of 50 statements, which have the three pos-
sible answers already mentioned, and a smaller part addressing the interviewee’s
experience level and the importance of the software.

As SUMI is an established method, with a concise questionnaire, it is a low-
effort method both for the evaluator and the interviewee. However, there is also a
major disadvantage, which is that the feedback consists only of numbers. There-
fore no information on how to improve usability in a particular area is gained.
The result of evaluating a system with the SUMI method is a “score” reflect-
ing how well the system performed in each of five dimensions (corresponding to
the five attributes mentioned above), and in what dimension the system needs
improvement.

Another important method in the area of software usability are the cognitive
dimensions of notations, first described by Green and Petre [3] and modified
into the Cognitive Dimensions framework proposed by Green and Blackwell. It
provides a “practical usability tool for everyday analysts and designers” [13].
Rather than being an analytic method, the cognitive dimensions provide a vo-
cabulary to discuss aspects that are cognitively relevant. The concept should
of cognitive dimensions allows designers to evaluate their system, to a certain
extent, by themselves, without the help of experts [13, 14].

Table 1 (taken from Green’s tutorial on cognitive dimensions [13] with modifi-
cations from [3]) briefly summarizes the 14 Cognitive Dimensions of Information
Artefacts.

3 Evaluation Target: The KeY System

The target for our usability-evaluation case study is the KeY Program Verifica-
tion System [15, 16] (co-developed by the authors’ research group at the Karl-
sruhe Institute of Technology, Germany and groups at TU Darmstadt, Germany
and at Chalmers University, Gothenburg, Sweden).

The target language for verification in the KeY system is Java Card 2.2.1.
Java 1.4 programs that respect the limitations of Java Card (no floats, no con-
currency, no dynamic class loading) can be verified as well. Specifications are
written using the Java Modeling Language (JML).

The program logic of KeY, called Java Card DL, is axiomatised in a se-
quent calculus. Those calculus rules that axiomatise program formulas define a
symbolic execution engine for Java Card and so directly reflect the operational
semantics. The calculus is written in a small domain-specific language called the
taclet language [15] that was designed for concise description of rules. Taclets
specify not merely the logical content of a rule, but also the context and prag-
matics of its application. They can be efficiently compiled not only into the rule
engine, but also into the automation heuristics and into the GUI. Depending
on the configuration, the axiomatisation of Java Card in the KeY prover uses
1000–1300 taclets.

Evaluating the Usability of Interactive Verification Systems
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Table 1. Definition of the cognitive dimensions by Green and Petre [13, 3]

Cognitive
Dimension

Description

Visibility and
Juxtaposability

Visibility: ability to view components easily, respectively is
every part of the code simultaneously visible (assuming a large
enough display)
Juxtaposability: ability to place/view any two components
side by side

Error-proneness Does the design of the notation induce ‘careless mistakes’?

Abstraction An abstraction is a class of entities or a grouping of elements
to be treated as one entity, either to lower the viscosity or to
make the notation more like the user’s conceptual structure

Hidden
dependencies

A hidden dependency is a relationship between two compo-
nents such that one of them is dependent on the other, but
that the dependency is not fully visible. In particular, the one-
way pointer where A points to B but B does not contain a
back-pointer to A

Premature
commitment

Constraints on the order of doing things force the user to make
a decision before the proper information is available

Secondary
notation

Extra information carried by other means than the official
syntax

Viscosity Resistance to change; the cost of making small changes

Closeness of
mapping

Closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic forms, re-
spectively when some of the language has been learnt, how
much of the rest can be inferred?

Diffuseness Verbosity of language, respectively how many symbols or
graphic entities are required to express a meaning?

Hard mental
operations

High demand on cognitive resources

Progressive
evaluation

Work-to-date can be checked at any time

Provisionality Degree of commitment to actions or marks

Role
expressiveness

The purpose of a component (or an action or a symbol) is
readily inferred

The KeY system is not merely a verification condition generator (VCG),
but a theorem prover for program logic that combines a variety of automated
reasoning techniques with interactive theorem proving. It employs a free-variable
sequent calculus for first-order dynamic logic for Java.

While striving for a high degree of automation, the KeY prover features a
user interface for presentation of proof states and rule application, aiming at a
seamless integration of automated and interactive proving.

B. Beckert, S. Grebing
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The KeY System’s user interface consists of a window divided into two parts.
On the left side of the window the proof tree is displayed showing the applied
rules and case distinctions.

On the right side of the window shows the sequent currently in focus. KeY
supports navigation of the proof tree and the application of rules through clicking
on (sub-)formulas, and it offers comfortable interaction mechanisms such as drag-
and-drop for quantifier instantiations. More on the user interface of the KeY
System can be found in [17].

4 Constructing the Questionnaire

Concept of the Questionnaire The main idea behind the design of our ques-
tionnaire is to cover the cognitive dimensions [18, 19]. Our idea was to investigate
– in general – whether these dimensions can serve as a method for evaluating
interactive verification systems and – specifically – in which way the KeY System
should be changed to improve its usability.

Table 1 shows the cognitive dimensions [13], and Table 2 shows examples
of the corresponding questions from our questionnaire. As the table shows, our
questions cover almost all cognitive dimensions except the dimension of hidden
dependencies.

Note that some dimensions are covered by more than one question. These
questions often differ in how specific they are for our chosen target. For exam-
ple, a question for the dimension of visibility and juxtaposability that applies in
general to interactive theorem provers is:

How clear is the arrangement of the formulas in the open goal? Is it
possible to determine where a formula results from?.

A question that also relates to visibility and juxtaposability but is more specific
to the KeY System is:

To handle formulas to be proven, the KeY System transforms it with
normal form rules (e.g., arithmetic rules). Which normal form rules (the
ones KeY applies during the automatic verification process) are most
annoying or confusing when the automatic process stops and you have
to continue interactively?

Specific questions may lead to more specific answers, which may be more useful
for improving the system. Some questions we asked even mention suspected
problems with usability and ask for a confirmation. On the other hand, such
specific questions are often leading and presuppose certain answers. They also
make it harder to compare different systems w.r.t. their usability. For that reason
our questionnaire includes both general and specific questions. Some questions
are half-way between general and specific, such as

Your automatic proof stops with 1000 closed and 1 open goal. What are
the first steps you do?

Evaluating the Usability of Interactive Verification Systems
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Table 2. Example questions from the questionnaire (the full version can be found at
http://userpages.uni-koblenz.de/~sarahgrebing/questionnaireForm.pdf).

Cognitive
Dimension

Questions

Visibility and
Juxtaposability

How clear is the arrangement of the formulas in the open goal?
Is it possible to determine where a formula results from?

Error-proneness Do some kind of mistakes during the interactive verification
process seem particularly common or easy to make?

Abstraction Would you like to have user-defined abstract datatypes?

Premature
commitment

Your automatic proof stops with 1000 closed and 1 open goal.
What are the first steps you do?

Secondary
notation

In JML it is possible to use comments for notes or explanations
of the annotation. Would it be useful to have such a feature
for proof nodes/subsequents/proof branches in KeY?

Viscosity If you need to make a change to the previous work (proof,
program, or annotation), how easy is it to make the change?
Why?

Closeness of
mapping

Does the JML notation or the dynamic logic notation allow
you to express your intuition why a program is correct with
respect to its annotation? Are there cases where the notation
is not sufficient?

Consistency Where there are different parts of the proof/open goal that
have a similar meaning, is the similarity clear from the way
they appear? Please give examples.

Diffuseness Does the JML notation or dynamic logic notation (a) let you
say what you want reasonably briefly, or is it (b) long-winded?
Why?

Hard mental
operations

Verifying programs using KeY, what proportion of the time
(approximately) are you spending on: quantifier instantiation,
finding the right invariant, . . .

Progressive
evaluation

How easy is it to stop in the middle of creating a proof and
check your work so far? Can you find out how much progress
you have made?

Provisionality Other proof systems allow to sketch the proof at a more ab-
stract/higher level (like Isabelle/HOL’s tactics). Do you think
it could be useful in KeY to sketch proofs if you have an idea
how the proof might look like, without giving detailed inter-
active guidance? If yes, do you have an idea what such a func-
tionality might look like?

Role
expressiveness

Would you like to have labels at formulas that indicate the
application of which rule the formula resulted from?

Besides instantiating the cognitive dimensions framework, we also included
some questions taken from or inspired by the SUMI questionnaire. In addition,
there are some questions aimed at gaining information about the interviewees,
e.g., their experience level.

B. Beckert, S. Grebing
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The structure of the questionnaire and examples for the questions are de-
scribed in more detail in the following subsections.

Structure of the Questionnaire Our questionnaire7 contains 48 questions
in total, of which 44 are open questions. It has the following overall structure:
after an introductory text describing the evaluation and its goals, we start with
some general questions about the interviewee’s experience with the KeY System.
Next, we ask questions about performing proof tasks and then questions about
the proof presentation. The next parts of the questionnaire cover the notation, in
our case the JML notation, and the error messages provided by the system. In the
last part of the questionnaire, we ask questions about usability in general, about
experiences with other proof systems, and about some auxiliary information such
as a contact address.

Questions Covering the Cognitive Dimensions Our questions related to
cognitive dimensions are mostly instances of the questions in the “cognitive
dimensions questionnaire optimized for users” [18, 19]. For example

When looking at an open goal, is it easy to tell what each sub-sequent is
for in the overall scheme? Why?

is an instance of

When reading the notation, is it easy to tell what each part is for in the
overall scheme? Why?

where we have instantiated the “notation” with the “open goal” and “part of
notation” with “sub-sequent”. Note, that such instantiations cannot be done
uniformly for all questions. For example, the term “notation” may have to be
instantiated with “open goal”, “JML notation” or “proof presentation” in dif-
ferent contexts.

According to Kadoda’s checklist [4], there are additional dimensions for veri-
fication systems, such as assistance (proof plan, next step) and meaningful error
messages, which we covered as well. The dimension “assistance” we covered with
the question “When the automatic proof process stops, is there enough informa-
tion given on the screen to continue interactively or do you have to search (e.g.,
scroll on the screen or click onto the proof tree / search in the proof tree) for
the appropriate information?”.

SUMI Questions As already recorded, we included a few questions inspired by
SUMI besides questions covering the cognitive dimensions. In particular, some
of the more general questions resulted from turning the SUMI question into an
open question. For example, the SUMI question (question number 2)

7 There is an online and an offline version of the questionnaire. The offline ver-
sion can be downloaded at http://userpages.uni-koblenz.de/~sarahgrebing/

questionnaireForm.pdf.

Evaluating the Usability of Interactive Verification Systems
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I would recommend this software to my colleagues.

was turned into the open question

I would recommend the KeY System to people who . . .

SUMI also has a few open questions such as “What do you think is the best aspect
of this software, and why?” or “What do you think needs most improvement,
and why?”. The first question we divided into two questions: “List the three
most positive or most helpful aspects of the KeY System for the interactive
verification process” and “List the three most negative or annoying aspects of
KeY concerning the interactive verification process”.

Questions Regarding the Interviewee’s Experience Level Different user
groups with different experience levels have different needs w.r.t. a system’s
usability. It is therefore important to get information on the interviewee’s expe-
rience level and how it relates to their answers.

The questions concerning the interviewee’s experience with the KeY System
included different ratings of the experience level. The interviewees had to choose
one of the experience levels (a) little experience, (b) average, (c) above average,
and (d) expert (these levels are defined in the questionnaire in more detail).
They had to name the largest and most complex project they had verified using
the KeY System. They also had to state since when they have been using the
KeY System.

5 Recruiting the Participants

To recruit the participants, we asked 25 KeY users either personally or in person-
alised emails to participate in our evaluation. We got responses from 17 partici-
pants. Their experience levels were almost evenly distributed between “average”,
“above average” and “expert”. We had one participant with “little experience”.
Many (but not all) participants had some relationship with the KeY project.
The time they had been using KeY ranged from the early beginnings of the KeY
System’s development (around 1999) to a few months during a university course.

For a usability evaluation, this is a small sample of interviewees. But this
sample gave us some interesting and useful insights both into the usability of
KeY and the design of usability questionnaires (as explained in the following
sections), and we feel that this is a sufficient sample size for a first evaluation.

For many interactive verification systems, which are developed in academia,
recruiting a larger number of participants is difficult. Even more so, if one wants
to recruit participants that know different systems and are able to compare
them, or if one wants to only recruit participants that have no relation to the
institution were the system is being developed (e.g., are enrolled as students)
and are thus more likely to give unbiased responses.

For Kadoda’s paper [20] about the differences between designers and users
of theorem proving assistants, a questionnaire was sent to 27 interviewees, i.e., a
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sample size similar to ours. The case study identified the gap between different
system views of the designers on the one hand and the users on the other hand.
It also highlighted that the cognitive dimensions have an effect on these differ-
ences. However, due to the small sample size, Kadoda found it hard to identify
particular areas where system designers have to take special care in order to
build a usable system.

6 Lessons Learned

6.1 Lessons Learned About Features that are Important for
Usability

Many questions we asked in the questionnaire are posed in a way specific to the
KeY System. Nevertheless, many of the answers we got and the lessons learned
from the survey apply just as well to interactive verification systems in general.
In the following these lessons are discussed in more detail.

Proof Presentation: A Major Point for Improvement Almost all participants
agreed that the presentation of (partial) proofs – and the formulas and sequences
of which proofs consist – is central to the usability of KeY. It is a time-consuming
task to inspect the sequences and to reconstruct the structure of the proof by
tracing the origin of each subsequence and formula. Thus, a (further) improve-
ment of KeY in this area, which relates to the cognitive dimension of visibility
and juxtaposability, should take high priority when usability is to be increased.

Documentation: Not Even the Specialists Know Everything Another important
area where the usability of KeY could be improved is documentation. About
50% of the participants mentioned a lack of documentation in at least one of
their answers. However, it is not one particular part or feature of the system that
seems to be in particular need of better documentation, but different participants
with different experience voice a wish for different areas where the documenta-
tion should be improved: the proof-search strategy settings, the proof rules, the
annotation language, and various other system features.

KeY is a rather long-running project and various documentation exists, in-
cluding a book [15]. This may be the reason why only very few participants
asked for documentation in general or for a manual to be written. But the an-
swers show that good documentation is essential. Even highly experienced users
and members of the development team asked for certain aspects of the documen-
tation to be improved, which shows that even specialists cannot be expected to
know everything about a tool without referring to documentation.

Proof and Change Management: For a Better Overview of What to Prove A
good proof and change management contributes to usability as well. This relates
to the cognitive dimensions of viscosity and hidden dependencies. We asked the
question of how easy it is to make a change to previous work (proof, program,
or annotation). In the KeY System, changing the program to be verified or its
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annotation is a simple task. However, if the proofs contain interactive steps,
it is time consuming work to redo the proofs which are affected by changes.
There is some functionality in KeY for replaying proofs automatically [21, 22],
but responses to our questionnaire show that users would like to have more
support in this area.

Additional Annotation Mechanisms: A Possibly Helpful Mechanism for Inexpe-
rienced Users In the questionnaire we asked about a possible extension of KeY
that allows to the addition of comments to nodes in proof trees:

In JML it is possible to use comments for notes or explanations of
the annotation. Would it be useful to have such a feature for proof
nodes/subsequents/proof branches in KeY?

This relates to secondary notation in the cognitive dimensions. The range of an-
swers to this question shows that users have mixed feelings. The positive answers
emphasised that such a feature may be particularly helpful for inexperienced
users. Some participants also suggested that proof annotations may be added
automatically by the system. That, however, would go beyond the dimension of
secondary notation and also relate to better visibility.

6.2 Lessons Learned About How Users Define Usability of
Interactive Verification Systems

We asked the participants what usability of an interactive verification system
means for them. The answers we got were manifold, but they mostly supported
our assumption that the cognitive dimensions framework is a good model and
provides the right concepts for evaluating usability of interactive verification
systems.

Areas that were mentioned frequently as being of particular importance for
usability are related to proof presentation and the cognitive dimension of visibil-
ity and juxtaposability. Some typical answers are: “understandable/easy to read
presentation of (partial) proofs/open goal, if the verification has to be continued
interactively” and “easy location of proof branches”.

Another important area is proof guidance as the following answers suggest:
“good feedback and guidance when proof attempt fails” and “suggestions on
how to proceed”.

Documentation of the tool and its rules as well as easy tool usage (with less
theoretical background) have been mentioned as features that contribute to the
usability for interactive verification systems. The dimension of viscosity was also
mentioned (e.g., “proof management, what remains to do”).

Finally, there were answers relating to the performance of the system and to
the user interface in general (e.g., “easy to use interface” and “interaction via
mouse and keyboard”).

All in all, the answers covered our expectations for features that contribute
to the cognitive dimensions and, thus the usability of interactive verification
systems:
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– proof presentation,

– documentation,

– change management,

– proof guidance,

– feedback mechanism,

– quality of the user interface,

– good performance of the automatic proof search.

6.3 Lessons Learned About How to Evaluate Usability of
Interactive Verification Systems

Lessons on How to Pose Questions

Open vs. Closed Questions One important lesson we have learned is that it is not
a good idea to have too many open questions as they take more time to answer.
The response rate goes down with too many open questions and the answers
tend to get shorter and less useful. Also, answers to open questions are harder
to evaluate. One should therefore carefully balance open and closed questions
and use closed questions where possible.

Clarity of Questions is Important The cognitive dimensions as vocabulary for
the usability of a system are a good starting point. But – not surprisingly – one
has to carefully think about how to instantiate the concepts. For example, the
question

Where there are different parts of the proof/open goal that have a similar
meaning, is the similarity clear from the way they appear? Please give
examples.

is an instance of a question from the cognitive dimensions questionnaire. But
with this question we gained almost no information because participants did not
know how to interpret “similar meaning”. The problem seems to be that in the
world of formal methods, “meaning” is identified with “semantics”. And to a
formal-methods person, it is clear that similar semantics may or may not be
indicated by appearance (syntax). On the other hand, “meaning” in the above
question could also be interpreted as “purpose”. So participants got confused.

Another example for a question that was often misunderstood is

If the performance of the automatic proof process would be improved,
would that lead to a better productivity? Or wouldn’t it help, because
most time is spent elsewhere during the proof process?

More than half of the users interpreted the “performance” as referring to ef-
fectiveness, i.e., which problems can be solved at all, and not as referring to
efficiency (computation time), which was our intended meaning.
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Rating Participants’ Experience Level To interpret participant’s answers,
it is very important to know if there are different classes of users and to what
class a participant belongs. A typical example for such classes are users with
different experience levels.

We asked the participants to (subjectively) rate their own experience level
and we asked for objective measures, namely the size of the biggest project they
did with KeY and for how long they have been using KeY.

It turns out that users are not good at judging their experience level. Some
who had just used the system in a lab course for two months rated their level to
be “average”, while some who had been working frequently with the system for
years rated themselves as “average” as well. Thus, asking for a self-rating only
makes sense if the various levels are well-defined (such as “you are an experienced
user if . . . ”).

Improving Usability vs. Measuring Usability One major drawback of the
cognitive dimensions is the fact that there is no measure or score for usabil-
ity with which one can compare different systems. On the other hand, a SUMI
evaluation provides a score but does not provide detailed feedback on how to
improve usability. So, in follow-up evaluations, we plan to use a better combi-
nation of both kinds of questions to get both a score and some feedback on how
to improve the system.

Designing Questionnaires for Evaluating Other Systems? It is rather difficult
to design a questionnaire that can be used to evaluate arbitrary verification
systems. In particular, questions that relate to the cognitive dimensions depend
on the system and on the information the systems designers want to gain.

The authors of the “cognitive dimensions questionnaire for users” [18] pro-
pose to let interviewees instantiate each question for themselves and let them
choose the issues to which they would like to draw attention. This strategy can
work, but it requires motivated interviewees that are willing to think hard about
what their answers are.

7 Conclusions and Future Work

Our evaluation provided some important insights and lessons both on the us-
ability of the KeY System and interactive verification systems in general and on
how to perform usability evaluations for interactive verification systems. Cog-
nitive dimensions have turned out to be a useful basis. And our questionnaire
worked very well in giving us the results and feedback we planned for this first
evaluation of the KeY System’s usability.

As a result, some new features are now being implemented in KeY to improve
its usability, in particular a better traceability of formulas and sequences in
(partial) proofs. We also investigate how to change the automatic application of
simplification rules to improve KeY w.r.t. the cognitive dimensions of diffuseness
and hard mental operations.
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Based on our experience, we will improve our questionnaire such that par-
ticipants can rate the system w.r.t. different dimensions and, thus, provide a
measure of usability. In particular, we plan to use that questionnaire on a larger
and uniform group of participants, namely students who have used KeY in a lab
course.
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Broadening the Scope of SMT-COMP:
the Application Track
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Abstract. During the last decade, SMT solvers have seen impressive
improvements in performance, features and popularity, and nowadays
they are routinely applied as reasoning engines in several domains. The
annual SMT solvers competition, SMT-COMP, has been one of the main
factors contributing to this success since its first edition in 2005. In order
to maintain its significance and positive impact, SMT-COMP needs to
evolve to capture the many different novel requirements which applica-
tions pose to SMT solvers, which often go beyond a single yes/no answer
to a satisfiability check. In this paper, we present a first step in this
direction: the “Application” track introduced in SMT-COMP 2011. We
present its design and implementation, report and discuss the results of
its first edition, and highlight its features and current limitations.

1 Introduction and Motivation

During the last decade, SMT solvers have seen impressive improvements in per-
formance, features and popularity, and nowadays they are routinely applied as
reasoning engines in several domains, from verification to planning and schedul-
ing. Part of this success is the result of a standardization process initiated by the
introduction of the SMT-LIB 1.2 standard [13] and continued with the currently
adopted SMT-LIB 2.0 standard [3].

Before SMT-LIB was introduced, every solver had his own proprietary input
language to specify satisfiability queries: the rich variety of SMT approaches
in the last decade resulted in the proliferation of different syntaxes, with the
effect of complicating experimental comparison between the solvers. It was not
uncommon for research groups to maintain, beyond the solver itself, a set of
tools for translating between the various languages.

The process of adopting the SMT-LIB standard, however, was not a com-
pletely automatic process. At the time of proposing SMT-LIB 1.2 some solvers
were already mature tools, usually specialized for a particular task and with
a substantial amount of benchmark database in their own language. Certainly
switching to a new language at that point was not much in the interest of SMT
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FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-GA-2008-
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research groups: changing language implies writing a new parser, maybe new
data structures, translate all the benchmark suites, and perform extensive test-
ing. All this effort “without glory” was probably superior to that of maintaining
the proprietary language.

The SMT-COMP was a major driving force towards the adoption of the
SMT-LIB standard, as it gave the necessary motivation to standardize the input
languages. The effort of implementing the new solver infrastructure was justified
by the enthusiasm of participating to a friendly race and by the possibility of
acquiring visibility in the formal verification and automated deduction commu-
nities.

Another big contribution of the SMT-COMP is that of favoring the collection
of application-specific benchmarks. Several users of SMT usually submit their
benchmarks to the competition initiative as they know that the participating
solvers will try their best optimizations to solve them. As a result the submitted
benchmarks will be solved in less amount of time and therefore the original
application automatically receive a boost in performance.

The Application track. The Application track (as opposed to the traditional
Main track) was conceived to stimulate the development of incremental SMT
solvers: nowadays, SMT solvers are often tightly integrated with other higher-
level environments, such as, e.g., a model-checker, from which they receive many
successive satisfiability queries to be answered. Although these queries could be
solved by just restarting the search from scratch everytime, the solving process
is much more efficient if the SMT solver is instructed to cope with them incre-
mentally, by retaining some information from the result of the previous queries:
thus, the solver will perform only the new bit of search that is strictly necessary.

Expressing this behavior in a benchmark requires the specification of multiple
satisfiability queries, as well as the ability to set and restore backtrack-points in
the SMT solver: the SMT-LIB 2.0 standard allows to cope with this requirement
by means of the commands push and pop, which allow to dynamically control
the stack of assertions to be solved. As a side note, from the point of view of
the SMT-LIB 2.0 the Main track benchmarks can be seen as a restriction of the
Application track ones to contain only one query.

2 Design and Implementation

In designing the Application track of the competition, we had to face several
different requirements. The first, and perhaps most important, is that we wanted
to be able to mimic the interaction between an SMT solver and the higher level
application using it as faithfully as possible. In principle, we could have achieved
this by selecting some open-source “reference” application from some important
domains (e.g. model checking or program analysis), and requiring competitors in
the Application track to link their SMT solvers with the selected applications.

Although this solution was initially considered, it was however quickly dropped,
for the following reasons. First, this solution puts a lot of burden on the shoul-
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(declare-fun c0 () Int)
(declare-fun E0 () Bool)
(declare-fun f0 () Bool)
(declare-fun f1 () Bool)
(push 1) ;; push one checkpoint
(assert (and (or (<= c0 (- 3)) (not f1)) (or (not (= c0 0)) (not f0))))
(check-sat)
(pop 1) ;; discard all the formulas asserted after the most recent checkpoint
(declare-fun f2 () Bool)
(declare-fun f3 () Bool)
(declare-fun f4 () Bool)
(declare-fun c1 () Int)
(declare-fun E1 () Bool)
(assert (and (or (>= (+ c1 (* 3 c0)) 0) (not f4)) (or E0 (= c0 c1) (not f2))))
(push 1)
(check-sat)
(assert (and f1 (not f2)))
(check-sat)
(pop 1)
(exit)

Fig. 1. Example of a simple trace for the Application track.

ders of potential competitors, thus contributing to the general perception that
the barrier for participating in the SMT competition is too high. Second, it
makes the competition heavily depend on some specific (versions of) applica-
tions, which could result in unwanted bias and/or difficulty in reproducing the
results. Finally, this solution is in strong contrast with one of the main goals
that SMT-COMP has pursued since its first edition in 2005, which is the pro-
motion of the SMT-LIB standard input format and library of benchmarks for
SMT solvers.

A solution that addresses the above points is to generate a trace of the
interaction between an application and its back-end SMT solver, by exploiting
the capabilities of the new SMT-LIB 2.0 language [3] of expressing incremental
problems and complex interactions with the SMT solver. This decouples the
competition from the applications that provide the benchmarks, it eases the
task of reproducing the results, and it allows for collecting, storing and managing
benchmarks using the same formats, tools and infrastructure as the main SMT-
COMP track. Moreover, it helps in promoting the adoption of the features of the
SMT-LIB 2.0 language for specifying incremental SMT problems. In particular,
the Application track makes use of the features of the SMT-LIB 2.0 language
that allow for specifying a dynamic stack of formulas (by using the push, pop

and assert commands) and performing multiple satisfiability checks (via the
check-sat command) on it. A simple example trace is shown in Figure 1.

A drawback of the latter solution, however, is that solvers can see the whole
sequence of queries that occur in the trace before actually solving them. This is
in contrast with the “real world” scenario in which applications query the solvers
in an interactive, “online” manner, and do not generate the next query until the
solver has produced an answer for the current one. In principle, knowing all
the queries in advance might allow some solvers to apply some techniques that
would not be available in an online setting. To prevent this possibility, we have
developed a trace executor, a tool which is designed to mimic the interaction
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between an application and an SMT solver used as a back-end reasoning engine.
More specifically, the trace executor serves the following purposes: (i) it simulates
the online interaction by sending single queries to the SMT solver (through
their standard input); (ii) it prevents “look-ahead” behaviors of SMT solvers;
(iii) it records time and answers for each call, possibly aborting the execution
in case of a wrong answer; (iv) it guarantees a fair execution for all solvers by
abstracting from any possible crash, misbehavior, etc. that may happen on the
application side. The trace executor tool is open source, and it is available from
[14]. Its concept and functionalities are similar to those used for the evaluation
of different BDD packages for model checking described in [17].

Scoring mechanism. For the first edition of the Application track, the follow-
ing scoring procedure was implemented. The score for each benchmark is a pair
〈n,m〉, with n ∈ [0, N ] an integral number of points scored for the benchmark,
where N is the number of satisfiability queries in the benchmark. m ∈ [0, T ] is
the (real-valued) time in seconds, where T is the timeout. The score of a solver is
obtained by summing component-wise the scores for the individual benchmarks.
Scores of solvers are compared lexicographically: a solver with a higher n-value
wins, with the cumulative time only used to break ties.

The score for a single benchmark is initialized with 〈0, 0〉, and then computed
as follows. (i) A correctly-reported sat or unsat answer after s seconds (count-
ing from the previous answer) contributes 〈1, s〉 to the score. (ii) An answer of
unknown, an unexpected answer, a crash, or a memory-out during execution of
the query, or a benchmark timeout, aborts the execution of the benchmark and
assigns the current value of the score to the benchmark.3 (iii) The first incor-
rect answer has the effect of terminating the trace executor, and the returned
score for the overall benchmark is 〈0, 0〉, effectively canceling the score for the
current benchmark. As queries are only presented in order, this scoring system
may mean that relatively “easier” queries are hidden behind more difficult ones
located at the middle of the query sequence.

Example 1. For example, suppose that there are 3 solvers, S1, S2 and S3,
competing on 2 benchmark traces, T1 and T2, containing respectively 5 and
3 queries, with a timeout of 100 seconds. Suppose that the solvers behave as
follows:

– S1 solves each of the first four queries of T1 in 10 seconds each and the fifth
in another 40 seconds. Then, it solves the first 2 queries of T2 in 2 seconds
each, timing out on the third;

– S2 solves the first four queries of T1 in 10 seconds each, timing out on the
fifth, and then all the 3 queries of T2 in 5 seconds each;

– S3 solves the first four queries of T1 in 2 seconds each, but it incorrectly
answers the fifth. It then solves all the 3 queries of T2 in 1 second each.

3 The timeout is set globally for the entire benchmark; there are no individual timeouts
for queries.
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Then, the scores for the solvers are as follows:

– S1 obtains a score of 〈5, 80〉 on T1, and a score of 〈2, 4〉 on T2. Its total score
is therefore 〈7, 82〉;

– S2 obtains a score of 〈4, 40〉 on T1, and a score of 〈3, 15〉 on T2, resulting in
a total of 〈7, 55〉;

– S3 obtains a score of 〈0, 0〉 on T1, due to the wrong answer on the last query,
and a score of 〈3, 3〉 on T2. Its total score is therefore 〈3, 3〉.

The final ranking of the solvers is therefore S2, S1, S3. �

During the discussions following the end of the competition and the preparation
for the next edition, some issues were raised concerning the potential bias of
the above scoring mechanism towards certain kinds of benchmarks/applications.
Benchmarks collected from different applications vary a lot in the number and
the difficulty of their individual satisfiability queries. For instance, benchmarks
from hardware bounded model checking typically consist of relatively few (in
the order of hundreds) incremental SMT calls of increasing size, in which each
query might be exponentially more difficult to solve than its predecessor in the
sequence. In contrast, benchmarks taken e.g. from software verification based
on predicate abstraction consist of hundreds of thousands of satisfiability checks
of much more uniform size and complexity. These differences are not properly
reflected in the above score, in which each correct answer adds one point to
the result, independently of the context/benchmark in which it occurs, and the
main ranking criterion is the total number of correct answers, with the execution
time used only for breaking ties. As a consequence, solvers that are optimized
for benchmarks with many easy queries have a potential advantage over those
designed for bounded model checking.

Different solutions for fixing the above problem are currently being evaluated
for the 2012 edition of the Application track. In particular, the current candidate
proposal is that of giving different weights to queries depending on the bench-
mark in which they occur. This could be achieved for instance by incrementing
the score of 1/Ni points for each solved query, where Ni is the total number of
queries of the current trace. In this way, solving one more problem in a BMC
trace of bound 100 would count much more than solving one more query in a
predicate abstraction trace with 100000 trivial satisfiability checks.

3 Benchmarks

The availability of good quality benchmarks is a crucial factor for the success
of solver competitions, and the Application track is no exception. In order to
ensure the widest possible range of sources and application domains, a public
call for benchmarks was issued several months before the competition dates.
No restrictions were put on the nature of the benchmarks or the used theories,
as long as they conformed to the SMT-LIB 2.0 specification [3] and they rep-
resented realistic sequences of incremental calls to an SMT solver issued by a
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higher level application. For the first edition of the Application track, more than
6400 benchmarks were submitted, for a total of more than 4800000 satisfiability
queries. The following gives brief descriptions of the benchmarks.

BMC and k-Induction queries from the NuSMV Model Checker [7]. These are
verification problems on Linear Hybrid Automata and Lustre designs, using
linear rational (QF LRA) and integer (QF LIA) arithmetic.

BMC and k-Induction queries from the Kratos Software Model Checker [8].
These are verification problems on SystemC designs. Each benchmark comes
in two versions: the first using linear rational arithmetic (QF LRA), and the
second using bit-vector arithmetic (QF BV).

Predicate abstraction queries from the Blast Software Model Checker [4]. The
benchmarks have been generated by logging the calls to the Simplify theorem
prover made by Blast for computing predicate abstractions of some Windows
device driver C programs. They use the combined theory of linear integer arith-
metic and uninterpreted functions (QF UFLIA).

k-Induction queries from the Kind Model Checker [11]. These benchmarks are
invariant verification problems on Lustre programs, using the combined theory
of linear integer arithmetic and uninterpreted functions (QF UFLIA).

Access control policy benchmarks from the ASASP project [1]. ASASP imple-
ments a symbolic reachability procedure for the analysis of administrative access
control policies. The benchmarks use quantifiers, arrays, uninterpreted functions
and linear integer arithmetic (AUFLIA).

Selection of Competition Benchmarks. In the main track of SMT-COMP,
the subset of the SMT-LIB benchmarks to be used in the competition are se-
lected with an algorithm that ensures a good balance of difficulties, status (sat
vs unsat) and origin of the instances [2]. For the first edition of the Application
track, however, in most of the divisions there was no need to perform a selec-
tion of benchmarks, given that the number of instances available was sufficiently
small that all of them could be included in the competition. The only excep-
tions were the QF UFLIA and the AUFLIA divisions, in which the number of
benchmarks was too high for including all of them in the competition. In these
two cases, we simply picked a subset of the instances with the largest number
of incremental queries. As the Application track matures, and more incremental
benchmarks become available, we expect to design more sophisticated selection
criteria, inspired by those used in the main track.

4 Results

The first edition of the Application track was held during SMT-COMP 2011, as
part of the CAV conference. The track was run on the SMT-Exec service [15],
using the same infrastructure as the main SMT-COMP.
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Participating solvers. Five different solvers took part to the first edition of
the Application track. The following gives brief descriptions of the participants.

Boolector 1.4.1 (with SMT-LIB 2.0 parser) [5]. The original Boolector 1.4.1
was developed by Armin Biere and Robert Brummaryer at the Johannes Ke-
pler University of Linz. Boolector is one of the most efficient SMT solvers for
bit-vectors (QF BV) and arrays (QF AUFBV). The participating version was
connected with a generic parser for SMT-LIB 2.0 [16], and submitted by the
competition organizers as a solver of interest for the SMT community. Boolec-
tor competed in the QF BV division.

MathSAT 5 [9]. MathSAT5 is developed by Alberto Griggio, Bas Schaafsma,
Alessandro Cimatti and Roberto Sebastiani of Fondazione Bruno Kessler and
University of Trento. It is the latest incarnation of a series of solvers with the
same name (but independent implementations) that have been developed in
Trento as research platforms for SMT since 2002. MathSAT5 competed in the
QF BV, QF UFLIA, QF LIA and QF LRA divisions.

OpenSMT [6]. OpenSMT is an open-source SMT solver developed by Roberto
Bruttomesso, Ondrej Sery, Natasha Sharygina and Aliaksei Tsitovich of Univer-
sità della Svizzera Italiana, Lugano, with the objective of being an open plat-
form for research, development and detailed documentation on modern SMT
techniques. OpenSMT competed in the QF LRA division.

SMTInterpol [10] 2.0pre. SMTInterpol is a solver developed by Jürgen Christ
and Jochen Hoenicke of University of Freiburg, with particular focus on proof
generation and interpolation. SMTInterpol competed in the QF UFLIA, QF LRA
and QF LIA divisions.

Z3 3.0 [12]. Z3 3.0 is the latest version of a very popular and efficient SMT solver
developed by Leonardo de Moura, Nikolaj Bjørner and Cristoph Wintersteiger
at Microsoft Research. Z3 competed in all divisions.

Results. A summary of the results of the 2011 Application track competition is
shown in Figure 2. For each division, the table reports the participating solvers,
their score expressed as a ratio between the number of solved queries and the
total queries (and computed with the procedure described in §2), and the total
execution time (not considering the timeouts). No results are reported for the
AUFLIA division, since only one solver supporting it (Z3) was submitted.

Discussion. In order to assess the usefulness and significance of the Applica-
tion track, it is interesting to compare its results with those of the main track
of SMT-COMP 2011. Figure 3 summarizes the results of the main track for the
solvers participating also in the Application track.4 For each solver, besides the

4 For Boolector, the version used in the main track is newer than those of the
Application track.
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QF BV

Solver Score Time

MathSAT5 1883/2277 14854

Z3 1413/2277 18836

Boolector (+SMT-LIB 2.0) 863/2277 16989

QF UFLIA

Solver Score Time

Z3 1238660/1249524 10015

MathSAT5 1237186/1249524 50464

SMTInterpol 1235238/1249524 25440

QF LRA

Solver Score Time

MathSAT5 795/1060 3596
Z3 656/1060 10073

SMTInterpol 465/1060 10333

OpenSMT 375/1060 6950

QF LIA

Solver Score Time

MathSAT5 12608/13941 40065

Z3 12262/13941 62512
SMTInterpol 9108/13941 66763

Fig. 2. Results of the Application track at SMT-COMP 2011.

score and total execution time, also their absolute ranking in the main track
is reported.5 By comparing the two groups of tables we can see that there are
significant differences between the main and the Application tracks in all the
divisions. In no single division the rankings are the same across the two tracks,
and in three cases out of four the winners are different. There are many pos-
sible explanations for such differences, including differences in the nature and
the domains of the benchmarks and in the features of the solvers that are put
under stress by the two tracks (for example, some solvers apply aggressive and
very effective preprocessing techniques, which might not be compatible with in-
cremental problems). Moreover, some divisions in the Application track contain
only benchmarks coming from a single source, which might increase the chances
of bias towards a particular solver; this was difficult to avoid for the first edition,
and it will become less and less evident as the library of incremental benchmarks
increases in size. Nevertheless, the fact that there are such visible differences,
on benchmarks coming from applications in important domains, is already a
sufficient reason to justify the interest in the Application track.

5 Conclusions

In this report we have discussed the motivations, design, implementation and re-
sults of the Application track of the SMT-COMP 2011. Our hope is that this new
track will contribute in advancing the state-of-the-art of the SMT solvers with
respect to their incremental behavior. Such infrastructure is, in fact, very impor-
tant in recent applications where a tight communication of similar satisfiability
queries is demanded. The benchmarks and our implementation of the track were
specifically designed to reflect as much as possible this kind of communication.

The results of the first edition of the Application track compared with those
of the Main track, shows that the handling incrementality requires different

5 This is the ranking considering also the other competitors of the main track that did
not participate in the Application track, and which are therefore not shown here.
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QF BV

Solver Ranking Score Time

Z3 1st 188/210 7634

Boolector (v1.5.33) 3rd 183/210 5049

MathSAT5 4th 180/210 6214

QF UFLIA

Solver Ranking Score Time

Z3 1st 207/207 205

SMTInterpol 2nd 207/207 2265

MathSAT5 3rd 206/207 2859

QF LRA

Solver Ranking Score Time

Z3 1st 195/207 6088
MathSAT5 2nd 193/207 8963

OpenSMT 4th 178/207 18436

SMTInterpol 5th 169/207 16975

QF LIA

Solver Ranking Score Time

Z3 1st 203/210 5276

MathSAT5 2nd 190/210 2608
SMTInterpol 3rd 116/210 2917

Fig. 3. Summary of results of the main track of SMT-COMP 2011 for the competitors
of the Application track.

optimizations from those used in single-query benchmarks. This motivates us to
collect more incremental benchmarks and to increase the visibility of Application
track for its extremely practical orientation.
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Abstract. In this paper, we used a simple metric (i.e. Lines of Code)
to measure the complexity involved in software verification and software
testing. The goal is then, to argue for software verification over software
testing, and motivate a discussion of how to reduce the complexity in-
volved in software verification. We propose to reduce this complexity by
translating the software to a simple intermediate representation which
can be verified using an efficient verifier, such as Boogie [2].

Keywords: Intermediate Verification Language, Software Testing, Soft-
ware Verification, Metrics

1 Introduction

Software testing cannot guarantee that a tested program will be free from errors,
whereas software verification can [1]. However, full verification of entire systems
is often impossible because of resource limitations and complexity. Therefore,
software testing is still the most common technique for ensuring the reliability
of software systems [11].

In this paper, we discuss a possible metric for comparing the complexity of
software verification and software testing. The goal is to motivate a discussion of
how to reduce the complexity involved in software verification, thereby making
verification more applicable for industrial usage.

Using different metrics to measure the complexity of software programs is
an active research area, see [4] for an overview. We propose using the Lines of
Code (LoC) metric to measure the complexity involved in software verification
and software testing. The result of LoC-based complexity measurement shows
that if using an efficient program verifier, software verification can be no harder
than software testing, while improving our confidence in the correctness of our
software. We argue that the Boogie verifier is a suitable verifier and suggest how
to correctly translate software to a suitable intermediate representation for input
to this verifier.
? Funded by John & Pat Hume Scholarship and Doctoral Teaching Scholarship from

the Computer Science Department of NUI Maynooth.
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Outline A case study is presented in Section 2. The discussion topic of this
paper and our view to it are both suggested in Section 3. Finally, the conclusion
is made in Section 4.

2 Case Study

As a case study, we demonstrate a two-way sorting algorithm, taken from the
software verification competition of VSTTE 2012 [10], and see how many LoC1

are written to complete its verification task and its testing task2. By “com-
plete”, we mean that all the pre-defined criteria for each task have been checked
thoroughly.

2.1 Criteria Setting

First, we set one criterion for software testing, i.e., functional behaviour (ensuring
an array of booleans is sorted in the given order). Then, we manually generate
code to meet the criterion. This code is usually referred to as “test cases” and can
be executed by a test runner (in this case, the code targets NUnit [9]). We count
the LoC of all test cases as the complexity measurement for software testing.

Next, we set three criteria for software verification, i.e. functional behaviour,
termination and safety (e.g. ensure no invalid array access). Then, we manually
generate annotations (e.g. preconditions, postconditions and loop invariants) to
meet the criteria. These annotations can be interpreted by an automated pro-
gram verifier (in our case we use Dafny [6]). We count the LoC of annotations
as the complexity measurement result for software verification. Regarding the
conjunction(s) in a proof obligation, the LoC would count the conjunction sym-
bols (e.g. ampersand symbol) plus 1. For example, in Dafny, a postcondition
expressed as “requires A & B;”, which would count as two LoC. We have to
admit that the current methodology for counting LoC of software verification is
informal, and requires further research to make it formalized.

2.2 Results

The LoC measurement results for software verification and software testing are
listed in Table 1.

Generally, it is infeasible to test the absence of an event [7]. Thus, the ter-
mination and safety criteria are more appropriate for verification than testing.
For example, if a program executes and does not stop, all that we know is that
the program has not halted yet and no conclusion can be derived from such a
circumstance. Whereas in program verification, proof of program termination

1 The LoC is counted by logical line of code, i.e. a statement followed by a domain-
specific termination symbol (e.g. semicolon) will count as one logical line of code.

2 The full description of this case study can be found at:
http://www.cs.nuim.ie/∼zcheng/COMPARE2012/case.html
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Question under Study: Two-way Sort Algorithm

Functional Behaviour Termination Safety Total

Software Testing 16 N/A N/A 16

Software Verification 13 0 2 15

Table 1: LoC measurement result for the Two-way Sort Algorithm

can ensure a program will always halt. For example, the Dafny program verifier
uses the keyword decreases to express the variant functions which are used to
proof termination. It is also capable of automatically guessing simple variant
functions.

Regarding the functional behaviour criterion, we can see the LoC for soft-
ware testing is greater than for software verification. Moreover, software testing
by nature cannot guarantee all the circumstances are tested. Therefore, in order
to get more confidence about a program under test, new code (i.e. test cases) is
needed. In contrast, the LoC for functional behaviour checking in software veri-
fication is a fixed number (i.e. no extra annotations are needed once a program
is verified).

One approach for reducing the LoC involved in software verification is using
an intermediate verification language such as the Boogie language [2]. For ex-
ample, the Dafny program verifier translates its program and specifications into
the Boogie language, which allows the Dafny program verifier to use the Boogie
verifier as its back-end. The Boogie verifier features abstract interpretation for
inference of properties such as loop invariants. Moreover, mathematical theories
(e.g., set theory and tree theory) are encoded in the Boogie language in advance,
which allows Dafny program verifier writing concise model-based specifications.
All these features of intermediate verification language can reduce the quan-
tity of annotations that must be discharged in the verification process. Related
work shows that program verifiers powered by the Boogie verifier are excellent
in accuracy and efficiency [8].

3 How to Reduce the Complexity of Software Verification

We think using a suitable program verifier can lower the complexity of software
verification. In [5], we proposed a reliable generic translation framework for the
Boogie language (shown in Figure 1), allowing convenient access to the Boogie
verifier. The modelling and metamodelling approach [3] provides the foundation
of the framework. An intermediate representation, i.e. the Boogie Extension
Metamodel, is introduced to bridge the translation from different source lan-
guages to the Boogie language, thereby reducing the translation complexity. By
the assistance of proposed framework, it is expected that software verification
would be accessible for software developers even more.

We also believe that there are many potential solutions to reduce the com-
plexity of software verification, and further discussion on this topic is warranted.
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Fig. 1: Overview of Our Proposed Generic Translation Framework

4 Conclusion

In this paper, we used a simple metric (i.e. LoC) to measure the complexity
involved in software verification and software testing. The result motivates the
use of software verification over software testing, and shows that an efficient pro-
gram verifier can greatly reduce the verification complexity. How to reduce the
complexity of software verification is still an open question that deserves further
discussion. In our opinion, the Boogie verifier is a suitable verifier for efficient
software verification. To interact with the Boogie verifier, a Boogie program is
required as the intermediate representation of the source program to be verified.
Our proposed translation framework, based on metamodelling, provides the ideal
platform for a reliable translation from a source program to a Boogie program.
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Benchmarking Static Analyzers

Pascal Cuoq, Florent Kirchner, and Boris Yakobowski

CEA LIST?

1 Introduction

Static analysis benchmarks matter. Although benchmarking requires significant
effort, it has driven innovation in many areas of Computer Science. Therefore
this process and the underlying testcases should be carefully devised. However
the problem that static analysis tackles—statically predicting whether a program
is correct, or what it does when executed—is so hard that there exist no perfect
oracle. For this and other reasons, there is little consensus on desirable and
undesirable properties of a static analyzer. This article discusses some of these
issues. Its examples involve the minutiae of C, but the principles should generalize
to static analysis for most programming languages and, for some, to benchmarks
for other partial solutions to undecidable problems.

2 Differing designs, differing goals

Benchmarks organizers should acknowledge that static analyzers use techniques
that vary wildly in design and goals. To be representative and useful, the bench-
mark must be clear on the properties being tested.

At most one issue per test case When static analysis techniques are applied
to C, they always only apply to defined executions. This is such a common
restriction that it is not usually mentioned by those who make it. As corollary,
a testcase should have at most one undefined behavior [4] (if the benchmark
is about detecting undefined behaviors) or none (if the benchmark is about
detecting another property, say, reachability of a specific label). Having more
than one undefined behavior can cause mis-categorizations.

The reason is that it is allowable, and in fact desirable, for static analyzers to
use so-called blocking semantics where the execution “gets stuck” on undefined
behaviors. In fact, all tools use blocking semantics to some extent. In the example
below, even high speed/low precision static analyses such as Steengaard’s [7]
exclude the possibility that t coincidentally ends up pointing to c because variable
d happens to follow c in memory. Most analyses claim s and t do not alias. A
tool might conclude that *s == 3, and that reachable_p is not called.

int c, d, *s = &c, *t = &d - 1;

*s = 3; *t = 4;

if (*s == 4) reachable_p();

? Part of this work has been conducted during the ANR-funded U3CAT project.
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Here, it is usual to consider that reachable_p is never called, because there
are no defined executions that reach the call—although a concrete execution
may reach it under circumstances outside the programmer’s control. Technically,
computing t = &d - 1 is an undefined behavior [5, §6.5.6:8], and a tool is allowed
to consider that execution stops there. Out of practical considerations, some
may wait until t is dereferenced to assume execution gets stuck. In any case,
the correct, consensual answer is that reachable_p is unreachable. The tricky
situation is when there is no consensus on the semantics of the undefined behavior,
as in the next paragraph.

Uninitialized variables as unknown values Some C static analyzers consider
uninitialized variables simply as having unknown values. Developers of these
tools may even have fallen into the habit of using this behavior as a feature
when writing tests. This is their privilege as toolmakers. However, organizers
should not assume that all analyzers take this approach. Other analyzers may
treat an uninitialized access as the undefined behavior that it is [5, §6.2.4:5,
§6.7.8:10, §3.17.2, §6.2.6.1:5] . Using the same “blocking semantics” principle
that everyone uses, these analyzers may then consider executions going through
the uninitialized access as stuck—and unfairly fail the test.

A better convention to introduce unknown values is a call to a dedicated
function. Each toolmaker can then be invited to model the function adequately.

Well-identified goals The SRD test at http://samate.nist.gov/SRD/view_
testcase.php?tID=1737 implies that an analyzer should flag all uses of standard
function realloc. The justification is that the realloc’ed data could remain
lying in place in memory if the realloc function decided to move the block.
However, absent any indication that the data is security-sensitive, the testcase
is only measuring the ability of the analyzer to warn for any call to realloc:
the standard does not specify any circumstances in which realloc is guaranteed
not to move the pointed block (and having to sanitize the block before calling
realloc defeats its purpose altogether). The C programming community does
not universally consider realloc as a dangerous function always to be avoided.
Thus an optimal analyzer with 100% marks on this particular problem might be
rejected by programmers, who would consider it all noise and no signal.

A solution here is again to establish a simple convention to mark some
memory contents as sensitive. If used consistently in all testcases in a benchmark,
toolmakers can once and for all describe the relevant adjustments to make their
respective tools conform to the convention. In general, the best way to make sure
that a benchmark does not misrepresent the strengths and weaknesses of a tool
is to include the toolmakers in the process [1].

Bugs in benchmarks We have said that organizers should not willingly incor-
porate undefined behavior in their testcases—unless they are testing the detection
of this very defect. At the same time, we recommend organizers embrace the fact
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that they will unwillingly let a few undesirable bugs slip in. If some of the tested
tools are described as warning for undefined behaviors, and if such warnings are
emitted for constructs other than the known bug to detect, we recommend that
a few of these reports be investigated, just in case.

It is very easy to slip. Canet et al [2] find a bug other than the bug to be
detected in the Verisec benchmark [6]. The above-mentioned example 1737 from
the NIST SRD contains an undefined behavior: the pointer returned by realloc

is passed to printf("...%s\n"); without having been tested for NULL. A tool
may fail to warn for the realloc call being intrinsically dangerous, the debatable
property being tested; piling irony upon irony, the same tool may warn about the
nearby NULL dereference, a real issue but not the objective of the testcase—and
this may be confused as a warning about realloc.

Categorizing analyzer outputs Most benchmarks categorize the tools’ out-
puts as “positive” or “negative”. This allows results to be synthesized into two
well-understood metrics: precision and recall. However, from the point of view
of the tool maker, this is frustrating. The differences between techniques are
nowhere more visible than in the additional information they can provide. For in-
stance, software model checking can optionally provide a concrete execution path.
Abstract interpretation can guarantee that a statement is either unreachable or a
run-time error (red alarms in Polyspace). Leaving room for some, but not all, of
this information usually reveals the background of the organizers. Finally, since
all techniques have their limitations, an “I have detected that the program is
outside the scope of what I can do” category would be useful. It’s a heartache
for toolmakers to have to categorize this situation as either positive, negative or
unknown, and it is misleading. It should be kept separate.

3 General benchmarking pitfalls

Do not make the problem too easy Benchmark testcases for static analyzers,
in addition to staying clear of undefined behaviors, ought to have unknown inputs.
Should they all terminate and come with fixed inputs, then a simple strategy to
score on the benchmark is to unroll execution completely [4]. It is nice that a
static analyzer is able to do that, but it does not measure how well it fares in
actual use, predicting properties for billions of possible inputs at once. As an
example of the danger here, the NIST Juliet suite contains testcases with mostly
known inputs. A few have unknown inputs, but these are only boolean inputs
that are still too easy to brute-force.

Licensing issues The necessity of obtaining a license for proprietary tools
provides leverage to vendors: in addition to inquiring about the comparison, they
may decline participation, or recommend a particular offering to be tested.

In contrast, the developers of Open Source tools are seldom given these
opportunities, leading to two common challenges. One, the distribution of all-
inclusive versions—a common behavior in academic communities less subject to

Benchmarking Static Analyzers

COMPARE 2012 34



marketing segmentation—require careful configuration, heightening the risk of
misuse. This first pitfall can be avoided by contacting makers of Open Source
analyzers and allow them to pick options for the task at hand: this is merely the
equivalent of picking a tool from an artificially segmented commercial “suite”.

Second, some academic licenses for commercial tools include restrictions
on publication. One mitigation measure is to inquire whether the restrictions
apply when the tool is anonymized [3] and to decide whether to anonymize and
publish before results are known. Another is to extend the same privileges to all
participants in the benchmark; since restrictions can go as far as a veto right on
the resulting publication, organizers may well find this option unpalatable. In
any case, restrictions that have been applied should be stated in the resulting
publication as part of the testing protocol. We do not see quite enough of these
caveats, even for comparisons that include commercial tools for which we know
that licenses come with such strings attached [8].

4 Conclusion

Several C static analysis benchmarks already exist. It seems timely for this
community to follow the same evolution automated proving has, and to move to
larger—but still good-natured—competitions. But a large, recognized competition
can only emerge if researchers with different backgrounds recognize themselves in
it. To this end, basic principles must be agreed on. We propose some in this article.
Consensus seems within reach: each of the benchmarks in the short bibliography
applies most of the principles we recommend—but none apply them all.

This is a discussion paper. The conversation continues with more examples at
http://blog.frama-c.com/index.php?tag/benchmarks.

Acknowledgments The authors thank Radu Grigore and Éric Goubault for
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Abstract. We report on the second verified software competition. It was
organized by the three authors on a 48 hours period on November 8–10,
2011. This paper describes the competition, presents the five problems
that were proposed to the participants, and gives an overview of the
solutions sent by the 29 teams that entered the competition.

1 Introduction

Competitions for high-performance logic-solving tools have played a prominent
role in Computational Logic in the past decade or so. Well-established examples
include CASC (the competition for first-order provers) [17], the SAT Competi-
tion and SAT Race [12], and SMT-COMP (the Satisfiability Modulo Theories
Competition) [2]. Many other logic-solving fields have also developed competi-
tions in recent years, with new ones coming online yearly. The reason for this
interest is that competitions provide a high-profile opportunity for comparative
evaluation of tools. Competitions are good for competitors, who have a chance
to increase the visibility of their work by participation in the competition. This
is true especially, but not at all exclusively, if they do well. Competitions are
good for the field, since they attract attention from a broader audience than
might otherwise be following research progress in that area. Finally, competi-
tions are good for potential users of logic-solving tools, who have a chance to see
which tools are available and which seem to be doing well on various classes of
problems.

Competitions have recently been introduced in the field of deductive software
verification. The 1st Verified Software Competition was held in 2010, affiliated
with the “Verified Software: Theories Tools and Experiments” (VSTTE) confer-
ence [10]. A similar recent event was the COST IC0701 Verification Competition,
held in 2011 [5]. These two competitions were quite alike in spirit and organi-
zation: The objective was to verify behavioral correctness of several algorithms
in a limited amount of time (30–90 minutes per problem), and the participants
were free to choose the language of specification and implementation. Another
contest of verification tools was the SV-COMP 2012 competition [3], dedicated
specifically to fully automated reachability analysis of C programs.
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In this paper, we describe the 2nd Verified Software Competition, affiliated
with VSTTE 2012. The purposes of this competition were: to help promote ap-
proaches and tools, to provide new verification benchmarks, to stimulate further
development of verification techniques, and to have fun [1]. In the end, 29 teams
competed to solve 5 problems designed by the organizers over a period of three
days in early November, 2011. Their solutions, written using a total of 22 differ-
ent tools, were then judged by the organizers, over the course of the following
month. We chose not to make a total ranking list public, but instead identified
6 teams earning gold, silver, or bronze medals. The medalists were announced
at VSTTE 2012 (Philadelphia, January 28, 2012) and the 2 gold-medalist teams
were each given a 15-minute slot at the conference to present their solution.

The rest of this paper is organized as follows. Section 2 gives an overview
of the competition. Then Section 3 describes the five problems and, for each,
discusses the solutions that we received. Finally, Section 4 lists the winners and
draws some lessons from this competition.

2 Competition Overview

2.1 Schedule

We have chosen to hold the competition over a 48 hours period in order to include
more challenging problems than it was feasible for an on-site competition. One
source of inspiration for us was the annual ICFP programming contest.

The competition was organized during Fall 2011, with the following schedule:

– Sep 30/Oct 7/Nov 1: the competition is announced on various mailing lists;
– Nov 8, 15:00 UTC: the competition starts (problems are put on the web);
– Nov 10, 15:00 UTC: the competition ends (solutions are sent by email);
– Dec 12: winners are notified privately;
– Jan 28: medalists are announced at VSTTE 2012 and other participants are

sent their score and rank privately.

2.2 Technical Organization

The competition website [1] was hosted as a subpage of the VSTTE 2012 website.
A Google group was created for the organizers to make announcements, and for
the participants to ask questions prior and during the competition and to make
their solutions public after the competition if they wish. An email address was
created for the participants to submit their solutions.

2.3 Rules

The full description of the competition is available at the competition website [1].
The main rules were the following:

– team work is allowed, but only teams up to 4 members are eligible for the
first prize;
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Fig. 1. Geographical distribution of the participants.

– any software used in the solutions should be freely available for noncommer-
cial use to the public;

– software must be usable on x86 Linux or Windows;
– participants can modify their tools during the competition.

2.4 Participants

The competition gathered 79 participants, grouped in 29 teams as follows:

– 8 teams of size 1,
– 6 teams of size 2,
– 4 teams of size 3,
– 10 teams of size 4,
– 1 team of size 9.

Participants were from North America, Europe, and Asia, as depicted in Fig. 1.
Participants used the following systems, in alphabetic order (the number between
parentheses indicates how many teams used that system): ACL2 (1), Agda (3),
ATS (1), B (2), BLAST (1), CBMC (1), Coq (7), Dafny (6), Escher (1), Guru
(1), HIP (1), Holfoot (1), Isabelle (2), KeY (1), KIV (1), PAT (1), PML (1),
PVS (3), Socos (1), VCC (2), VeriFast (1), Ynot (1). 9 teams used at least two
different systems.

2.5 Evaluation Process

We approached the rather daunting task of hand-evaluating the solutions as fol-
lows. Our goal was to determine the medalists first, and then go back and provide
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additional feedback as time permitted to all competitors. So we first triaged the
solutions by determining their maximum possible score; that is, maximal points
each could possibly earn, based on the parts of the problems it claimed to have
solved. For example, only 5 teams claimed to have solved all parts of all the
problems. We then heuristically started with the top 8 teams, and each of the
organizers closely evaluated their solutions.

The evaluation process was as follows:

1. Read the submission to check that the formal specification conforms to the
problem statement.

2. Check the formal proof:

(a) Run the tool on the input files and check the output (proof found or
correctly replayed).

(b) Manually introduce errors in code or specification (for example, extend
loop bounds or weaken a precondition) and rerun the tool to check that
input files are not accepted anymore.

As a result of this evaluation, each task was attributed a fraction of its total
“worth”. We subtracted points based on our assessment that the solution for
some part of a problem fell short in some way.

Despite some points being taken away, we were already able to determine
our medalists from the first-chosen 8 teams, since no other team had a max-
imum possible score that could possibly beat the actual score we assessed for
the bronze medalists. After we determined the winners, we then divided the re-
maining solutions among ourselves, to provide written feedback to each team on
its solution. Each team was emailed the comments for its solution, once all had
been inspected by at least one organizer.

3 Problems and Submissions

Prior to the competition, we prepared 8 problems of various difficulties. Each
problem was solved using Why3 [4] and was independently tested by our col-
leagues Claude Marché and Duckki Oe. Finally, we picked up the following 5
problems:

1. Two-Way Sort (50 points) — sort an array of Boolean values
2. Combinators (100 points) — call-by-value reduction of SK-terms
3. Ring Buffer (150 points) — queue data structure in a circular array
4. Tree Reconstruction (150 points) — build a tree from a list of leaf depths
5. Breadth-First Search (150 points) — shortest path in a directed graph

We selected the problems and assigned the scores according to the time we
ourselves and the testers spent devising solutions to them. The three problems
we did not include were: Booth’s multiplication algorithm, permutation inverse
in place [11, p. 176], and counting sort. The former two problems seemed too
difficult for a 48-hour competition and the third one was too similar to problems
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2-way sort SK comb. ring buffer tree rec. BFS

at least one task attempted 25 21 20 28 19

all tasks attempted 20 19 19 17 12

perfect solution 19 10 15 12 9

Fig. 2. Solutions overview (over a total of 29 solutions).

two_way_sort(a: array of boolean) :=

i <- 0;

j <- length(a) - 1;

while i <= j do

if not a[i] then

i <- i+1

elseif a[j] then

j <- j-1

else

swap(a, i, j);

i <- i+1;

j <- j-1

endif

endwhile

Fig. 3. Problem 1: Two-Way Sort.

1 and 3. In hindsight, we could have chosen more difficult problems, as the
top-ranked participants completed all tasks without much trouble.

Each problem consists of a program to be verified, according to a set of
verification tasks ranging from mere safety and termination to full behavioral
correctness. A pseudo-code with an imperative flavor is used to describe the
programs, but the participants were free to turn them into the language of their
choice, including purely applicative languages.

Figure 2 gives an overview of the solutions we received, on a per-problem
basis. The remainder of this section describes the problems in detail and provides
some feedback on the solutions proposed by the participants.

3.1 Problem 1: Two-Way Sort

The first problem we considered to be easy, and was supposed to be a warm-up
exercise for the participants. A pseudo-code to sort an array of Boolean values is
given (see Fig. 3). It simply scans the array from left to right with index i and
from right to left with index j, swapping values a[i] and a[j] when necessary.
The verification task are the following:

1. Safety: Verify that every array access is made within bounds.
2. Termination: Prove that function two_way_sort always terminates.
3. Behavior: Verify that after execution of function two_way_sort, the follow-

ing properties hold:

The 2nd Verified Software Competition: Experience Report

COMPARE 2012 40



terms t ::= S | K | (t t)
CBV contexts C ::= � | (C t) | (v C)

values v ::= K | S | (K v) | (S v) | ((S v) v)

�[t] = t
(C t1)[t] = (C[t] t1)
(v C)[t] = (v C[t])

C[((K v1) v2)] → C[v1]
C[(((S v1) v2) v3)] → C[((v1 v3) (v2 v3))]

Fig. 4. Problem 2: Combinators.

(a) array a is sorted in increasing order;
(b) array a is a permutation of its initial contents.

Fig. 2 confirms that Problem 1 was the easiest one. Yet we were surprised to see
a considerable number of quite laborious solutions, in particular regarding the
definition of a permutation (task 3b). We were expecting the participants to pick
up such a definition from a standard library, but almost no one did so. Various
definitions for the permutation property were used: explicit lists of transpositions
together with an interpretation function, bijective mapping of indices, equality
of the multisets of elements, etc.

One team used the BLAST model checker to perform tasks 1 (safety) and 2
(termination). Some participants spotted that the loop test i <= j can be safely
replaced by i < j (and proved it).

3.2 Problem 2: Combinators

Problem 2 is slightly different from the other ones. Instead of providing pseudo-
code to be verified, this problem simply gives a specification and requires the
participants to first implement a function, and then to perform some verifica-
tion tasks. Namely, the problem defines call-by-value reduction of SK-terms (see
Fig. 4) and then proposes one implementation task:

1. Implement a unary function reduction which, when given a combinator
term t as input, returns a term t′ such that t →∗ t′ and t′ 6→, or loops if
there is no such term.

and three verification tasks:

1. Prove that if reduction(t) returns t′, then t→∗ t′ and t′ 6→.
2. Prove that reduction terminates on any term that does not contain S.
3. Consider the meta-language function ks defined by

ks 0 = K,
ks (n + 1) = ((ks n) K).

Prove that reduction applied to the term (ks n) returns K when n is even,
and (K K) when n is odd.
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One subtlety regarding this problem is that function reduction may not termi-
nate. Hence implementing it is already challenging in some systems; that is why
implementation is a task in itself. Another consequence is that verification task 1
is a partial correctness result. Tasks 2 and 3 were slightly easier, in particular
because it is possible to exhibit a termination argument for reduction when
applied on S-free terms.

A common error in submissions was forgetting to require a value on the left
hand-side of a context (v C). Indeed, in absence of a dependent type to impose
this side condition in the definition of the data type for contexts, one has to
resort to an extra well-formedness predicate and it was sometimes accidentally
omitted from specifications. Regarding verification task 1, another error was
to prove that the returned term was a value without proving that values are
irreducible.

One team provided an improved result for verification task 2, showing that
any S-free term necessarily reduces to a term of the shape K (K (K . . . )). Another
team proved as a bonus that reduction of SII(SII) diverges (with I being defined
as SKK).

3.3 Problem 3: Ring Buffer

With problem 3, we are back with traditional imperative programming using
arrays. A bounded queue data structure is implemented using a circular array
(see Fig. 5) with operations to create a new queue, to clear it, to get or remove the
first element, and to add a new element. The verification tasks are the following:

1. Safety. Verify that every array access is made within bounds.
2. Behavior. Verify the correctness of the implementation w.r.t. the first-in

first-out semantics of a queue.
3. Harness. The following test harness should be verified.

test (x: int , y: int , z: int) :=

b <- create (2);

push(b, x);

push(b, y);

h <- pop(b); assert h = x;

push(b, z);

h <- pop(b); assert h = y;

h <- pop(b); assert h = z;

The challenge of this problem is to come up with a nice specification of the
first-in first-out semantics of the queue (task 2). Most participants defined the
model of the queue as a list, either as a ghost field in the ring_buffer record
itself, or as a separate logical function. Some participants, however, opted for
algebraic specifications (i.e. showing head(push(b, x)) = x and so on). Note that
verification task 3 does not require a modular proof using the model defined for
the purpose of verification task 2. Thus a mere calculation is accepted as a valid
answer for task 3; that solution was used by several participants.
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type ring_buffer = record

data : array of int; // buffer contents

size : int; // buffer capacity

first: int; // queue head , if any

len : int; // queue length

end

create(n: int): ring_buffer :=

return new ring_buffer(

data = new array[n] of int;

size = n; first = 0; len = 0)

clear(b: ring_buffer) :=

b.len <- 0

head(b: ring_buffer): int :=

return b.data[b.first]

push(b: ring_buffer , x: int) :=

b.data[(b.first + b.len) mod b.size] <- x;

b.len <- b.len + 1

pop(b: ring_buffer): int :=

r <- b.data[b.first];

b.first <- (b.first + 1) mod b.size;

b.len <- b.len - 1;

return r

Fig. 5. Problem 3: Ring Buffer.

This problem appeared to be the second easiest one, judging by the number
of perfect solutions, see Fig. 2. Though it was not explicitly required, some
solutions are generic w.r.t. the type of elements (and then instantiated on type
int for task 3). Some participants replaced the mod operation by a test and a
subtraction, since b.first + b.len and b.first + 1 cannot be greater than
2b.size− 1. This was accepted.

3.4 Problem 4: Tree Reconstruction

There is a little story behind the fourth problem. It is the last step in Garsia-
Wachs algorithm for minimum cost binary trees [7]. It can be stated as follows:
given a list l of integers, you have to reconstruct a binary tree, if it exists, such
that its leaf depths, when traversed in order, form exactly l. For instance, from
the list 1, 3, 3, 2 one reconstructs the binary tree
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type tree

Leaf(): tree

Node(l:tree , r:tree): tree

type list

is_empty(s: list): boolean

head(s: list): int

pop(s: list)

build_rec(d: int , s: list): tree :=

if is_empty(s) then fail; endif

h <- head(s);

if h < d then fail; endif

if h = d then pop(s); return Leaf(); endif

l <- build_rec(d+1, s);

r <- build_rec(d+1, s);

return Node(l, r)

build(s: list): tree :=

t <- build_rec(0, s);

if not is_empty(s) then fail; endif

return t

Fig. 6. Problem 4: Tree Reconstruction.

but there is no tree corresponding to the list 1, 3, 2, 2. A recursive function to
perform this reconstruction is given (see Fig. 6; R.E. Tarjan is credited for this
code [7, p. 638]). Then the verification tasks are the following:

1. Soundness. Verify that whenever function build successfully returns a tree,
the depths of its leaves are exactly those passed in the argument list.

2. Completeness. Verify that whenever function build reports failure, there is
no tree that corresponds to the argument list.

3. Termination. Prove that function build always terminates.

4. Harness. The following test harness should be verified:

– Verify that build applied to the list 1, 3, 3, 2 returns the tree Node(Leaf,
Node(Node(Leaf, Leaf), Leaf)).

– Verify that build applied to the list 1, 3, 2, 2 reports failure.

One difficulty here is to prove completeness (task 2). Another difficulty is to
prove termination (task 3), as it is not obvious to figure out a variant for function
build_rec. On the contrary, verification task 4 (harness) turns out to be easy
as soon as one can execute the code of build, as in harness for problem 3.

A delightful bonus from the ACL2 team is worth pointing out: To demon-
strate that function build is reasonably efficient, they applied it to the LISP code
of function build_rec itself, as each S-expression can be seen as a binary tree.
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bfs(source: vertex , dest: vertex): int :=

V <- {source }; C <- {source }; N <- {};

d <- 0;

while C is not empty do

remove one vertex v from C;

if v = dest then return d; endif

for each w in succ(v) do

if w is not in V then

add w to V;

add w to N;

endif

endfor

if C is empty then

C <- N;

N <- {};

d <- d+1;

endif

endwhile

fail "no path"

Fig. 7. Problem 5: Breadth-First Search.

3.5 Problem 5: Breadth-First Search

The last problem is a traditional breadth-first search algorithm to find out the
shortest path in a directed graph, given a source and a target vertex. The graph
is introduced as two abstract data types, respectively for vertices and finite sets
of vertices, and a function succ to return the successors of a given vertex:

type vertex

type vertex_set

succ(v: vertex): vertex_set

The code for the breadth-first search is given in Fig. 7. Then the verification
tasks are the following:

1. Soundness. Verify that whenever function bfs returns an integer n this is
indeed the length of the shortest path from source to dest. A partial score
is attributed if it is only proved that there exists a path of length n from
source to dest.

2. Completeness. Verify that whenever function bfs reports failure there is no
path from source to dest.

One difficulty is that the graph is not necessarily finite, thus the code may
diverge when there is no path from source to dest. This was done purposely,
to introduce another partial correctness task (as in problem 2). However, some
participants asked during the competition if they may assume the graph to be
finite, in particular to assume vertices to be the integers 0, 1, . . . , n − 1, and
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sometimes even to use an explicit adjacency matrix for the graph. We answered
positively to that request. We also received solutions for this problem that did
not rely on this assumption.

Another request was the possibility to rewrite the inner loop of the code
(which updates sets V and N) using set operations (union, difference, etc.). We
also agreed. On second thought, the problem would have been nicer if stated this
way, that is with the inner loop replaced by the following two assignments:

N <- union(N, diff(succ(v), V));

V <- union(V, succ(v));

This fifth problem has the lowest number of perfect solutions: 9 out of 29
submissions.

4 Competition Outcome

4.1 And the Winners Are...

A group of 6 excellent submissions with tied scores emerged from our evaluation.
Thus we opted for 6 medalists (2 bronze, 2 silver, 2 gold) to avoid discriminating
between solutions that were too close. The medalists are:

Gold medal (600 points):

– Jared Davis, Matt Kaufmann, J Strother Moore, and Sol Swords with
ACL2 [8,9].

– Gidon Ernst, Gerhard Schellhorn, Kurt Stenzel, and Bogdan Tofan with
KIV [16].

Silver medal (595 points):

– K. Rustan M. Leino and Peter Müller with Dafny [13].
– Sam Owre and Natarajan Shankar with PVS [15,14].

Bronze medal (590 points):

– Ernie Cohen and Micha l Moskal with VCC [6].
– Jason Koenig and Nadia Polikarpova with Dafny [13].

4.2 Lessons Learned

Evaluation. Probably, the most important conclusion we arrived at during the
competition was that evaluation of submitted solutions is a non-trivial and, to
some extent, subjective process. This is what sets deductive verification compe-
titions apart from programming contests (where the success can be judged using
series of tests) and prover competitions (where a proof trace can be mechanically
verified by a trusted certification procedure). In our case, a solution consists of
a formal specification of the problem and a program to solve it, both written
in some system-specific language. It is the responsibility of a verification system
to check that the program satisfies the requirements posed by the specification,
and, to a first approximation, we can trust the verification software to do its job
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correctly. Even then a user (and a judge is nothing but an exigent user) must
have a good knowledge of the system in question and be aware of the hidden as-
sumptions and turned-off-by-default checks — an issue we stumbled on a couple
of times during evaluation.

What is more difficult, error-prone, and time-consuming is checking that a
submitted specification corresponds to our intuitive understanding of the prob-
lem and its informal description written by humans and for humans. We found
no other way to do it than to carefully read the submissions, separating spec-
ification from proofs and program code, and evaluating its conformance to our
requirements. In this respect, it is not unlike peer-reviewing of scientific publi-
cations. Additionally, every system proposes its own language: sometimes quite
verbose, sometimes employing a rather exotic syntax, sometimes with specifica-
tion parts thinly spread among hundreds of lines of auxiliary information. Here
we must commend the solutions written for PVS and Dafny for being among the
easiest ones to read.

Advice to future organizers. To help improve the evaluation process, we would
recommend to organizers of future competitions to gather a kind of “program
committee” to which reviewing of submissions could be delegated. Such a com-
mittee would benefit from having experts in as many different tools as possible, to
help provide more expert reviews of submitted solutions. While a common spec-
ification language is out of the question (as the main interest of the contest lies
in comparing diverse approaches to formalization), we can strive for more rigid
problem descriptions, down to first-order formulations of desired properties. We,
as a community, should also push verification system developers towards well-
structured and easily readable languages, with a good separation of specification
from implementation and proof. Indeed, future organizers might consider requir-
ing the specification of each part of a problem to be clearly indicated, either in
comments or even better, by placing the specifications in separate files.

Advice to future competitors. The single biggest issue we had in evaluating so-
lutions was just understanding the specifications of the theorems. One has little
choice but to trust the verification tool which claims the solution is correct, but
we cannot escape the need to judge whether that solution solves the stated prob-
lem or falls short in some way (for example, by adding an assumption that was
not explicitly allowed, or by incorrectly formulating some property). So anything
a competitor can do to make it as clear and comprehensible as possible what the
specification is will help making judging easier and more likely less error-prone.
Sometimes even determining which parts of a set of proof scripts or files con-
stitute the specification was challenging. And of course, any special notation or
syntax for a tool should be carefully (but briefly) introduced in the README
for the submission (and/or possibly inline in the submission itself, where it is
first used). Finally, a few submissions we evaluated were not based on plain text
files, but rather required a specialized viewer even to look at the solutions. This
posed problems for us, particularly when the viewer was only available on one
platform (e.g., Windows). We recommend that all tools based on specialized
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viewers have some kind of export feature to produce plain text, at least for the
statements of theorems proved.

Problem difficulty. When several independent problems are proposed, it is not
easy to estimate their relative difficulty in an unbiased manner. The solution that
you devise for your problem is not necessarily the best or the simplest one: we
were pleasantly surprised to see some participants find more elegant and concise
formulations of our algorithms and specifications than those we came up with
ourselves (cf. the inner loop in problem 5). Also, what is hard to do in your
system of choice might be easy with some other tool. It is always better to draw
in several independent and competent testers, preferably using different systems,
before the competition.

Verification tasks. An interesting class of verification problems is related to
termination issues. Even for systems that admit diverging programs it is not
always possible to specify and prove non-termination on a certain input (and
we did not include any such task in our problems). Somewhat paradoxically, the
systems that are based on logics with total functions (such as Coq) are better
suited for this task, as some indirection is required anyway to describe a diverging
computation (for example, a supplementary “fuel” parameter).

5 Conclusion

Organizing this competition was a lot of fun — and it seems it was so for the par-
ticipants as well, which was one of our goals. But it was also a lot of work for us
to evaluate the solutions. Obviously this format cannot be kept for future com-
petitions, especially if we anticipate on an even greater number of participants.
Alternatives include on-site competitions in limited time (to limit the number of
participants), peer-reviewing of the solutions (to limit the workload), and servers
with pre-installed verification software (to avoid the installation burden).
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Abstract. In this paper, we discuss the challenges that have to be ad-
dressed when organising program verification competitions. Our focus is
on competitions for verification systems where the participants both for-
malise an informally stated requirement and (typically) provide some
guidance for the tool to show it. The paper draws its insights from
our experiences with organising a program verification competition at
FoVeOOS 2011. We discuss in particular the following aspects: challenge
selection, on-site versus online organisation, team composition and judg-
ing. We conclude with a list of recommendations for future competition
organisers.

1 Introduction

As verification competitions are becoming more popular we are gaining expe-
rience on how to organise them. There have been three competitions to-date
focusing on a particular form of program verification. In this paper, by pro-
gram verification, we mean a formal verification process, where a human user
contributes in two ways: (a) by formalising an informally stated requirement
specification for a program, and (b) by providing (if necessary) some guidance
to the verification system to show formally the conformance of the program to
the requirement. This setup is due to the strong properties being shown and the
heterogeneity of the verification system landscape. It makes such a competition
quite different from other competitions in verification (e.g., SV-COMP [1]) or
automated reasoning (e.g., CASC [7]), where the formal requirement is identical
for all teams and fixed in advance, and no user guidance in showing it is ac-
cepted. In our context, organisers have to deal with a whole new range of issues,
such as judging the adequacy of the requirement formalisation.

Although verification competitions up until now have varied in their organ-
isation, all of them succeeded in bringing together the verification community
to compare their tools and techniques. Hence, it is important that these com-
petitions become a regular event, perhaps co-located with the same conference
every year in order to increase participation and build momentum. Through
our participation, as both organisers and competitors, we realise that competi-
tions are not mature, and we often make “imperfect” arrangements in order to
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increase participation and build momentum. Therefore, such competitions are
also a learning process from an organisational viewpoint. In the remainder of
this paper we share our experience of organising a verification competition at
FoVeOOS 2011. We begin with an overview of verification competitions held so-
far. Then, we discuss the challenge selection, on-site versus online organisation,
team composition and judging. Finally, we present a list of recommendations for
the organisers of future verification competitions.

2 History of Program Verification Competitions

The first program verification competition4 [5] was an informal event, held dur-
ing the VSTTE 2010 conference as a prelude to more formal competitions at
future meetings. The competition was organised by Natarajan Shankar, SRI In-
ternational, and Peter Müller, ETH Zürich, who were assisted by Gary Leavens,
University of Central Florida, in the judging. The challenges involved simple
data types that are supported by most verification tools for sequential or func-
tional programs. The teams, of up to three people, were given five verification
exercises with informal specifications, test cases, and pseudo code. The task was
to prepare a reproducible verification of executable code relative to a formalisa-
tion of the specifications using one or more verification tools. The allotted time
was two hours, and the solutions were judged for completeness and elegance as
well as correctness.

The second competition was initiated by the COST Action IC0701 [2], whose
topic is advancing formal verification of object-oriented software. Organised by
Marieke Huisman, University of Twente, Vladimir Klebanov, Karlsruhe Insti-
tute of Technology, and Rosemary Monahan, National University of Ireland,
Maynooth, the competition aimed to evaluate the usability of verification tools
in a relatively controlled experiment that could be easily repeated by others.
This competition was inspired by the first (in fact, both Vladimir Klebanov and
Rosemary Monahan participated in the first competition), and had a similar
format: up to three people forming a team, all participants physically present,
and teams using any verification system of their choice. The event took place the
afternoon prior to the FoVeOOS 2011 conference. Three challenges were given
in natural language and required a solution that consisted of a formal specifica-
tion and an implementation, where the specification was formally verified with
respect to its implementation. In contrast to the VSTTE event, a fixed time slot
was assigned for each of the challenges provided. This setup was chosen in order
to increase precision of the tool comparisons.

In both of these verification competitions, team registration was not required
in advance so participation was quite informal, with student teams especially
encouraged. This setup proved to be successful with eleven teams participat-
ing in the VSTTE competition and six teams participating in the FoVeOOS
competition. It is interesting to note that in each competition every team used

4 In the sense defined in the introduction.
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one verification tool and each tool was represented once. There was no explicit
ranking of solutions or a winner announcement. The judging panel manually in-
spected the solutions and pointed out strengths and weaknesses according to the
criteria of completeness, elegance, and automation; these subjective results were
presented during the conferences to foster discussions among the participants. In
both cases a post-competition paper provided the chance for further discussion
and revision of competition solutions.

The third competition [4] had a different format to the previous two: it was
an online competition in which participants had 48 hours to attempt five prob-
lems that were presented on the conference website. Any programming language,
specification language, and verification tool was allowed in the solution. The com-
petition, affiliated with VSTTE 2012 and organised by Jean-Christophe Filliâtre,
CNRS, Andrei Paskevich, University of Paris-Sud 11, and Aaron Stump, Univer-
sity of Iowa, attracted 29 teams (79 participants total) using 22 verification tools.
Each problem included several sub-tasks, e.g., safety, termination, behavioural
correctness, etc., and each sub-task was given a number of points. Submissions
from teams of up to four people, were ranked according to the total sum of
points they scored. The competition resulted in the award of two gold medals,
two silver medals, and two bronze medals. Within each medal class, the teams
were tied for points, with the gold medal teams earning perfect scores of 600
points.

3 Challenge Selection

An important step in the organisation of a verification competition is the se-
lection of challenges. Many of the verification challenges posed in competitions
so far have been variations of typical “text book” exercises. While posing more
open problems is an aspiration, these problems make it difficult to compare solu-
tions and may be daunting to new participants. Here, we discuss the importance
of the selection of competition challenges with the aim of making the competi-
tions accessible to all levels of participants, and in particular, making the event
attractive to newcomers to the area.

Having a pool of past competition problems in a repository like Verify This [3]
assists the challenge selection as one can vary existing problems or can extend
the problems to obtain similar or more advanced challenges. On the one hand,
such a repository would be a perfect test case for tool developers and a perfect
training base for new users. On the other, we want to avoid tool builders tailoring
their tools towards the competition database simply to win competitions rather
than contributing to the wider verification challenge.

3.1 Challenge Variety

Competition challenges should not (dis)favour a particular tool or approach if
at all possible. Verification competitions held so far did not feature tracks or
divisions, so quite different tools were pitted against each other. In our opinion,
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the challenges issued so far have been favouring tools that target functional
programming languages. Tools that target object-oriented languages were in
general at a disadvantage.

While introducing tracks or divisions, increases the organisers’ effort and re-
quires a bigger participant critical mass, we suggest that the organisers define a
set of core challenges, which all teams address, and several “speciality” tracks,
where teams can choose the set of challenges that best match the stronger fea-
tures of their tool. However, it is good to have a nonempty set of core challenges
that are attempted by all participants, because one of the important goals of
any competition is the comparison of the different solutions.

Additionally, we believe that a good (core) challenge set should be distinctive,
i.e., only a few teams should be able to solve each challenge. At the moment,
we do not think that there is enough experience with verification competitions,
but we believe that eventually the problems should be so distinctive that even
strong teams might not be able to solve all challenges (within the given time).
Furthermore, we advocate individual time slots for each challenge.

3.2 Challenge Sources

It is important that the challenges are attempted in advance to determine spec-
ification pitfalls and to determine the time that should be allocated to solving
each challenge. The drawback is that this reduces the pool of people that can
participate in a competition.

To obtain a better challenge set with more variety, a possibility is to ask par-
ticipants to contribute a challenge, with a worked-out solution and an estimate
of the required time. This should be something that they consider can be done
very well (fast, elegant etc.) with their approach, and would be challenging for
other tools. We believe that this will force participants to explicitly consider the
strong features of their own tool. It will also help to balance the challenges so
that they are not all targeting the same language and problem set. Challenges
(and solutions) should be submitted well in advance, to allow the organisers to
check that the solution is actually solvable, and does not just use a “trick” that
only the tool developers know about.

However it does not seem a good idea to make challenge submission obliga-
tory, as this might prevent non-developer teams from participating, and it would
make last minute participation complicated. Instead it would be a better idea to
reward challenge submission. For example, bonus points will be awarded if the
standard solution is “better” than all submitted solutions.

3.3 Importance of Small Challenges

With certain regularity, we face expectations that competitions should feature
larger and more complex challenges. In fact, this has been almost the predom-
inant dimension along which progress of verification as a whole has been eval-
uated: how large/complex a system can be formally verified? We would like to
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argue that this view needs to be supplemented with a different one involving the
verification of small, highly controlled challenges.

Two observations lead us to this opinion. First, the larger the challenge, the
more difficult/expensive it is to reproduce it. It is a significant advantage if the
competition situation can be re-enacted by anybody with access to a verification
system and a few hours to dedicate to the task. Larger time demands significantly
hamper penetration in the notoriously short-for-time work environment. Second,
when working on larger challenges, it is more difficult to keep track of net time
and effort spent, as other day-to-day activities (be it sleeping, teaching, or other
work) interfere.

It is true that certain tool capabilities that are essential for working on large
projects (hierarchical development, abstractions in-the-large, proof and change
management) are difficult to test with small challenges. At the same time, a
number of larger comparative case studies in formal development and verification
have already been carried out. Here we name examples such as the “production
cell” case study [6] and the Mondex case study [8].

What is missing is an on-going effort to evaluate usability of verification
systems, i.e., the amount of work that can be carried out by an average user
(preferably not the system’s designer) in a fixed amount of time. We conclude
that competitions with small focused challenges are an appropriate vehicle for
this.

4 On-site versus Online Competitions

To-date, verification competitions have been mainly on-site events, with all team
members participating in a common location, for the duration of the competition.
These events are typically between two and four hours long with a selection of
small challenges to be completed within the allocated timeframe. The location
of an on-site competition must provide adequate space for participants, with
sufficient caffeine and sugar supplies, and without disturbance from others. It is
an advantage to have all teams working in close proximity as this adds to the
enthusiasm and adrenaline; with teams reacting when competitors rejoice as a
challenge is solved, or lament as the verification doesn’t work out as nicely as
expected.

From the organisers’ perspective the advantage of such a setting is the ease
of ensuring that teams participate in accordance with the competition rules
(number of teams members involved etc.). A further advantage is that the or-
ganisers are available to notice, and clarify, any mis-understandings that arise.
From the participants’ perspective, the major advantage is the opportunity to
interact with users and developers of competing tools after the competition.
The momentum, built up through this interaction regarding alternative solution
strategies, has led to tool comparisons in a number of conference publications
[5] [2]. Another observation is that on-site competition with fixed time slots en-
courages co-operation between team members. This is due to the urgency of a
well-planned solution which solves the challenge in a limited time.
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The major disadvantage of an on-site competition is the cost and effort re-
quired to get all participants present. Both co-locating the competition with a
conference on a related topic so that participants are already on-site and the
provision of funding for student team participation have proved to be fruitful
strategies.

Online competitions, like those used in many programming competitions,
allow for greater participation as teams may participate without travelling. They
allow for competitions of longer duration and hence challenges of a larger size. We
believe that on-site and online competitions complement each other and should
co-exist. For example, larger problems are more suited to off-site challenges that
could be issued for tool developers whereas smaller problems are more suited to
students/tool users rather than developers.

In either competition setup, we suggest that the interaction between teams
after the competition could be increased through the provision of live record-
ings of the competition (a suggestion, for which we thank Gerhard Schellhorn).
Monitoring a team’s interaction with a tool could reveal strategies and tips for
tool users as well as aiding tool evaluation and increasing interest in verification
competitions itself. Of course, the interests of judges and spectators must be
balanced with the privacy preferences of participants.

5 Team Composition

With all the verification competitions that have been held so far, one of the
dominating questions has been on how to control for the human factor, since it
is not meaningful to test the verification system alone. Without proper control,
there is a risk that competitions will be dominated by “super experts”—tool
developers with many years of experience. They are aware of all the ins-and-outs
of the tools, and can even make small changes to the tool during the competition.
They also know how to tweak the specifications so that they are easily expressed
in the tool’s input language and are easily accepted by the tool.

Several ideas exist on how to ensure that super expert users do not skew
the competition to their advantage: one could allow only teams with non-expert
users (as suggested by Erik Poll: forbid any participants with a Master’s degree);
one could force expert users to use a tool that they are not very familiar with;
one could have mixed teams with users of different tools; or one could forbid
tool developers to participate (except as judges).

Unfortunately, all these suggestions seem to have practical problems (how
to get enough participants that are not tool builders or experts; program ver-
ification tools often have a steep learning curve; and manuals are not always
available). Therefore, we believe that the best workable solution is to consider
team composition and tool maturity when judging the solutions. In addition, for
future competitions we will explicitly encourage several teams using the same
tool to participate, allowing user competitions within the overall tool competi-
tion.
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To increase the variety of participants, we believe that there should be some
reward for taking part in the competition. In particular, if you are not a tool
developer, then why would you bother participating in a competition? If there is
a winner announced, you can put this on your CV. However, competitions could
have so many categories that almost all tools and participants can be judged so
that they win a prize. Organising competitions, where participants are invited
to contribute to a post-competition publication about the challenges could also
provide a motivation.

6 Judging

Judging verification competition solutions is challenging, but it is also very ex-
citing. Solutions are typically judged for their correctness, their completeness
and their elegance. While tools may verify if a given implementation is correct
with respect to the given specification, determining if a solution is complete and
elegant is not so straightforward. Presentation of proofs, degree of automation
in verification, annotation overhead, and the extent of verification (e.g., partial
vs. total correctness, etc.) are some of the further considerations.

In the first two verification competitions the judges manually inspected the
solutions providing subjective results at a presentation during the co-located
conference. A follow up conference paper allowed the participants to clean up
and revise their solutions for public consumption. In the third, a scoring scheme
was applied to each solution and submissions were ranked according to the total
sum of points they scored. However, it was noted upfront that “a certain degree
of subjectivity in judgement is inevitable and should be considered as part of
the game.”

Tools, solutions and team member abilities vary greatly, so there are many
parameters that play a role when measuring the quality of the solutions. One
strategy to aid the judging process is to categorise the tools according to their
characteristics and maturity, classifying the results based on these categories.
Usability should be measured, qualitatively until better metrics can be found.

6.1 The Role of the Tools in Judging

An important question is whether judging has to involve replaying the solutions
in the tools. There are arguments both for and against this. The main goals
related to the requirement of tool replay are: punishing fraud, tool unsoundness,
and specification inadequacy. While we discount the first issue, in the current
state of affairs, the others, especially the third, are of great importance. It is
important to keep in mind that there is no canonical requirement formalisation,
and tool replay does not bring an ultimate judgement.

If the tool produces an explicit proof object, inspecting it may expose both
unsoundness and specification inadequacy. Otherwise, the only way a tool may
help is mutation testing. If after changing a part of the requirement (including
the program being verified), the tool can still show conformance, there is a
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probability that the changed part contributes nothing to the problem. This may
indicate an issue with the tool soundness or requirement adequacy (or both).

The biggest argument against tool replay is the effort, both in installing and
running the tools and carrying out the solution analysis as described above.
There exists many versions of many verification tools, which can be installed on
many different platforms, each using many different plug-ins (all having many
versions). Knowing the exact tools that will be used in the competition in ad-
vance, especially if a large number of tools participate, is essential. Taking these
arguments together, at the current level of competition maturity we would not
advocate tool replay, unless doubts in the quality of a solution are present, or if
the replay in the tool promises significant benefits in judging the solution (e.g.,
by advanced proof presentation). Replay could be made easier in the future,
if tool developers make their tools available via a web interface, or if virtual
machine images could be provided.

6.2 Understanding the Argument

In order to judge the completeness or elegance of a solution it is necessary to
understand the argument behind it. Unfortunately, program verification argu-
ments are notoriously difficult to communicate. This applied both to systems
that expose an explicit proof object (i.e., a derivation in a certain calculus) and
to systems where the user only works with the annotated source code and does
not see the logical reasoning behind it.

The explicit proof object is typically too fine-grained, while the annotated
source code often does not make the argument structure explicit. Moreover,
whenever a tool silently infers a particular fact (a termination measure, for in-
stance), it reduces the burden on the user but may appear as a gap in reasoning
to an outsider. In any case, a good portion of knowledge about the background
theory implemented in a tool is needed to understand a solution.

A team’s approach to solving a problem is often one that the adjudicator
themselves would not have used. While this is normal for any problem-solving
scenario, we have noted that the solution presented is often a result of the par-
ticular strengths and weaknesses of the verification tool used.

While the overhead of adjudicating solutions in many different formalisms
is quite high, the benefits are many. While adjudicators will not be an expert
in every tool, it is our experience that expert non-users of tools can largely un-
derstand the various solutions. Examining solutions for the same challenges in
many different verification environments is extremely educational, and experi-
encing different approaches to solving the challenges (tool-driven or user-driven)
is also a fun component of the process.

The enthusiasm of participants, both in terms of the tools that they use and
the solutions that they develop is also uplifting. Explicitly scheduling an expla-
nation session where the team members talk an adjudicator through the solution
(possible with on-site competitions only) would take full advantage of this en-
thusiasm and assist the judges in developing a complete understanding of the
teams’ solutions. Above all, we believe that participants should be encouraged
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to clean up their solutions and interact after the competition, to discuss their
submissions and to compare the strengths and weaknesses of each tool.

7 List of Recommendations for Organisers

To conclude, we end this paper with a list of recommendations for future verifica-
tion competition organisers. These recommendations arise from our experience of
participating and organising verification competitions, and from our interactions
with other competition particpants. We believe that these recommendations will
contribute to improved verification competitions in the future.

– Associate the competition with a well-established, regular event.
– Encourage newcomers to participate in the competitions.
– Set up a repository of challenges.
– Remember the goals of competitions, and do not disregard small challenges.
– Ask participants to contribute challenges, and reward them for this.
– On-site verification competitions have their place, do not make all competi-

tions online.
– Encourage discussion between participants about their solutions.
– Record teams during competition participation.
– Judge teams depending on the maturity of their tools and the experience of

team members.
– Let team members explain their solutions to the judges.
– Encourage multiple teams using the same tool to participate.
– Invited participants to contribute to a post-competition publication.
– Rotate organisation and participation.

We look forward to further verification competitions and are confident that,
as they mature, they will become a major contributor to benchmarking verifica-
tion tools, improving their capabilities, and extending their usability.
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Abstract. Comparing different software verification or bug-finding tools
for C programs can be a difficult task. Problems arise from different
kinds of properties that different tools can check, restrictions on the in-
put programs accepted, lack of a standardized specification language for
program properties, or different interpretations of the programming lan-
guage semantics. In this discussion paper we describe problem areas and
discuss possible solutions. The paper also reflects some lessons we have
learned from participating with our tool LLBMC in the TACAS 2012
Competition on Software Verification (SV-COMP 2012).

1 Introduction

There is a growing number of tools focusing on analyzing the correctness of C
programs using formal methods, e.g., model checkers such as BLAST [4] and
SATABS [7], bounded model checking tools such as LLBMC [10], CBMC [6], or
F-Soft [9], and symbolic execution tools like KLEE [5].

While all of these tools have similar design goals, comparing them can be
cumbersome (Alglave et al. [1] seem to confirm this). Tool comparisons in other
fields (like SAT and SMT [2]) suggest that annual competitions and the possi-
bility to quickly and easily compare tools act as a major driving force within
a research community for developing better tools. This has also been realized
by the organizers of the software verification competition SV-COMP 2012 [3],
which took place in March/April 2012 for the first time.

2 Challenges

In the following we discuss challenges in comparing automated software analysis
tools for C programs and suggest possible solutions for each of these problems.

? This work was supported in part by the “Concept for the Future” of Karlsruhe
Institute of Technology within the framework of the German Excellence Initiative.
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Challenge 1: What is a correct program? While many would say that a speci-
fication is needed in order to determine whether a program is correct or not, we
take a slightly different, more general stance here.

Besides errors with respect to a given specification, a second, equally impor-
tant class of errors is due to underspecification in the programming language
definition, e.g. many aspects of the C programming language are underspecified
by the C99 standard [8]. Such underspecification is done intentionally to allow for
more freedom in implementing the standard on different computer architectures.

As an example, the result of a signed integer overflow in C is deliberately
left unspecified in order to allow not only two’s complement, but also alternative
implementations like, e.g., a sign plus magnitude encoding.

The C standard carefully distinguishes three different kinds of underspeci-
fication: undefined behavior, unspecified behavior, and implementation-defined
behavior. Implementation-defined behavior indicates that the semantics is de-
fined by the implementation at hand, which usually depends on the architecture
and the compiler. In the C99 standard, unspecified behavior is defined as behav-
ior for which the standard “provides two or more possibilities and imposes no
further requirements on which is chosen in any instance”.

Last but not least, undefined behavior is the least-specified of the three:
broadly speaking, if undefined behavior occurs “anything might happen”. Or,
as Scott Meyers puts it [11]: undefined behavior might even “reformat your
disk, send suggestive letters to your boss, fax source code to your competitors,
whatever.” Because of this malicious nature of undefined behavior we propose
to consider it always as a fault in a software implementation.

Proposal: Any program whose behavior depends on undefined or unspecified
aspects of a programming language should be considered incorrect. Important
errors in C programs, such as buffer overflows (access to not allocated memory),
null-pointer dereferences, or integer overflows fall into this class.

Challenge 2: Which error classes should be supported? Annex J of the C99
standard defines an extensive list of diverse cases in which undefined behavior
occurs, possibly too extensive to support all of these cases in academic tools. On
the other hand, for the sake of comparability, a minimal set of error types that
should be supported by all verification tools needs to be defined. Most program
analysis tools support checking for the following types of errors:

– Signed integer arithmetic overflow.
– Division by zero.
– Undefined bitwise shift behavior.
– Array out of bounds errors.
– Memory access violations.
– Violation of user provided assertions.

This is by no means a complete list of the errors that different tools can
detect (e.g., errors in signed integer shift operations are handled by some tools,
but not by others). And even if an error class is handled by a tool, its semantics
might be interpreted (slightly) differently.
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Proposal: One possibility to make checks of such common error classes available
in a larger set of tools is to encode them directly into C source code (e.g., by using
a preprocessor), as was done in SV-COMP 2012. See Figure 1 for an example. By
using such an encoding, the task of bug finding can be reduced to reachability
analysis.

1 int foo(int x)

2 {

3 return 1/x;

4 }

1 int foo(int x)

2 {

3 if (x == 0) {

4 error:

5 // unreachable?

6 } else {

7 return 1/x;

8 }

9 }

Fig. 1: Encoding a devision-by-zero-error as a reachability check.

This approach helps tool developers to concentrate on the the tools backend,
instead of having to implement all different error kinds. It also ensures that the
same errors are interpreted in the same way by all tools being evaluated.

Unfortunately, some properties cannot be expressed in simple C code, e.g.,
memory access correctness, which requires extensive knowledge about the oper-
ating system’s state. Furthermore, this approach results in intrusive changes to
the benchmark, and we therefore suggest to not encode properties as reachability,
but require all tools to explicitly support all error classes.

Challenge 3: How can we assemble suitable benchmark problems? Assembling
benchmark problems to compare the performance of bug-finding and verification
tools is an intricate task. Benchmark problems should be of adequate hardness,
be as close as possible to real-world programs, and the kind and location of the
error should be unambiguous. Thus, a benchmark program should either contain
no bug at all or a single, well-known bug. Benchmarks that contain multiple bugs
hinder comparison of the results, as different tools might detect different bugs.

Taking undefined behavior as described in Section 2 seriously, we arrive at
the following problem: if there is a program location that can exhibit undefined
behavior, the program can do anything after having executed the instruction at
that location. It could, e.g., jump straight to any position in the code and cause
arbitrarily weird follow-up behavior. Thus, a fully conforming verification tool
also needs to be able to detect any kind of undefined behavior, even if only a
specific class of errors is part of the benchmark suite.

In practice, undefined behavior can have a wide range of different effects.
Null-pointer dereferences will typically result in a program crash, whereas signed
integer does so rarely, if ever.
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No verification tool known to us actually treats undefined behavior according
to the standard (“everything is possible”), but opts for a more specific, practical
behavior instead. Common choices for such a more practice-oriented treatment
are:

– Treat signed integer overflow according to two’s complement, assuming that
no side effects occur.

– Assume program termination on division by zero.
– Assume program termination on invalid memory access operations.

But the result of an overflowing signed integer operation could also be mod-
eled as a fresh, unconstrained integer, while still assuming the operation to have
no side effects. This essentially reduces undefined behavior to undefined results.
Reading from invalid memory locations and division by zero could also be mod-
eled using fresh, unconstrained variables, writing to invalid memory locations
could be treated as a no-op. As can be seen, there is a wide range of different op-
tions on how to treat undefined behavior, all with their own merits and without
a clear winner.

Proposal: Benchmark problems should contain exactly one error or no error at
all. Moreover, the intended semantics of all cases of undefined behavior should
either be clearly specified, or all benchmark problems should be entirely free of
undefined behavior.

Challenge 4: How to treat interface functions? We call a function for which no
implementation is provided an interface function. Typical examples of interface
functions are (standard) library functions or operating system calls. The problem
here is that the semantics of such a function is not directly available, but has to
be provided by additional means. If a benchmark problem uses such an interface
function the tool has to handle this gracefully. There are several options how to
do this:

1. The function can be treated as exhibiting undefined behavior, essentially
resulting in a call to the function being an error.

2. The result of each call to the function can be interpreted as a fresh variable
of the appropriate type, assuming that the function does not have any side
effects.

3. Similarly, the theory of uninterpreted functions can be used to implement
functional congruence, while still assuming that the function does not have
any side effects.

4. A clearly specified semantics is built into the tool.
5. Finally, short stubs can be provided that mimic essential aspects of the real

semantics.

Proposal: Especially for standard library functions (e.g., memcpy, strlen, . . . )
and operating system calls the last two approaches seem to be preferable. If
interface functions are built into the tool, their semantics has to be specified
precisely. For other functions, if they are guaranteed to have no side effects, the
third option (uninterpreted functions) is preferable.
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Challenge 5: How to treat the initial state of a benchmark problem? Many
benchmark problems currently in use are small stand-alone programs extracted
from larger programs. While in a stand-alone program the initial state of global
variables, for example, is defined to be zero by the C standard, this does not
seem to faithfully capture the intended semantics of an extracted benchmark,
namely to isolate a fraction of the program relevant for the error at hand, while
still allowing all possible behaviors of the full program.

Proposal: If a benchmark problem is extracted from a larger program, false
initialization effects should be avoided. This can be achieved, e.g., by mimick-
ing the behavior of the missing program parts by stub initialization functions
that initialize those global variables that are not initialized explicitly to non-
deterministic values.

3 Software Verification or Bug Finding?

When software analysis tools are compared, the aim of the comparison has to
be defined succinctly. The primary question is: Does the comparison focus on
software verification1 or on bug finding? While both give an estimate on safety,
there is a notable difference in what kinds of results are to be expected.

Software verification tools should be required to not only return “safe” as an
answer, but also provide a proof of safety. Bug finding tools, on the other hand,
are usually not able to prove safety, but instead are intended to find as many
bugs as possible. For each bug they should provide a valid trace that allows to
reproduce the bug when running the program.2 Note that producing such an
error-trace is usually not required for software verification tools.

This difference also becomes visible in the way one typically thinks about
soundness and completeness.3 In formal software verification soundness means:
if the tool claims the code to be correct then the program is indeed correct.
Completeness here means: if the program is correct then the software verification
tool can generate a proof. Software verification tools cannot necessarily provide
a program trace for bugs. In bug finding it is the other way round: if a sound
bug finding tool reports an error, that error really exists in the program (i.e.,
there are no false positives). A bug finding tool is complete when: if the code
contains a bug, then the tool finds it. Bug finding tools usually cannot provide
a (sensible) proof of correctness, even when they can guarantee that there is no
bug in the code.

In almost all tool-comparisons there seems to be agreement that unsoundness
should be punished harder than incompleteness. If software verification tools

1 In the following, with software verification we mean formal proofs of a software’s
correctness.

2 We consider developing a common, standardized format for error traces an important
research goal by itself.

3 If a tool is sound and complete, this distinction is not important, but in reality most
tools are indeed incomplete.
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and bug finding tools are mixed up, this cannot be distinguished that easily.
Should we take the definitions from the verification community or the bug-
finding community? But the difference is not only in the tool, but also how
the tool is used. For instance, our bounded model checker LLBMC [10] can be
used as a verification tool if bounds are high enough, or as a bug finding tool, if
bounds are set low and high code coverage is to be achieved.

Considered as a software verification tool, LLBMC can be used with increas-
ingly higher bounds, until it either proves the property or reaches a time-out.
On the other hand, if the bounds are set low, LLBMC acts as a bug-finding
tool aimed at finding bugs quickly, but sacrificing completeness (in the sense of
missing bugs that could only be found with higher bounds).

We thus believe that any comparison of tools (in particular in competitions)
should set a clear focus on either software verification or bug finding, depending
on the goals of the competition.
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Abstract. In principle, running a competition of solvers is easy: one just
needs to collect solvers and benchmarks, run the experiments and publish
the results. In practice, there are a number of issues that must be dealt
with. This paper attempts to summarize the experience accumulated
during the organization of several competitions: pseudo-Boolean, SAT
and CSP/MaxCSP competitions.

1 Introduction

Many different kinds of solvers competitions are organized nowadays. The main
goal of these competitions is to evaluate solvers in the same experimental condi-
tions. Another goal is to help collecting publicly available benchmarks and also
help identifying new solvers on the market. In fact, the actual goal of a compe-
tition is to help the community identify good ideas implemented in the solvers
as well as strange results which may lead to new ideas.

The most visible result of a competition is a ranking of solvers, which is
certainly a good motivation to improve one’s solver. However, a ranking is nec-
essarily an over-simplified view of a competition. Indeed, there are several ways
to look at the solvers results, and determining which solver is the best one is
indeed a multi-objective optimization problem, with an additional complication
being that users do not agree on the importance of each criteria. Besides, there
are necessarily a number of biases which can influence the rankings such as the
selection of benchmarks and the experimental conditions (hardware characteris-
tics, time limits, ...). To sum up, it should not be forgotten that the results of a
competition are not an absolute truth, but are just a way to collect data about
solvers on a large scale and allow anyone to start his own analysis.

The author’s experience with organizing competitions started in 2005 with
the pseudo-Boolean (PB) track of the SAT 2005 competition [1], co-organized
with Vasco Manquinho. At that time, most of the infrastructure was borrowed
from the SAT environment previously developed by Laurent Simon and Daniel
Le Berre. The first innovation in this track was the introduction of the runsolver
tool [2] to improve the timing of solvers and to control more precisely the al-
located resources. In 2006, the pseudo-Boolean evaluation became independent,
and the competition framework was improved into a system called evaluation.
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This system was used to organize a large number of competitions since then:
pseudo-Boolean competitions (PB05, PB06, PB07, PB09, PB10, PB11, PB12)
[1], SAT competitions (SAT07, SAT09, SAT11) and CSP/MaxCSP competitions
(CPAI06, CPAI08, CSC09) [3]. evaluation is also used by local users to perform
their own experiments and was extended to support QBF, Max-SAT, AIG, MUS
and WCSP solvers.

Each competition introduced a new challenge and the number of solver types
that evaluation supports today makes it a very versatile system. This paper
attempts to summarize the most important features of evaluation, in the hope
that this can benefit everyone.

2 System requirements

The first reason for developing evaluation was the organization of the pseudo-
Boolean competitions. Since the beginning, the pseudo-Boolean competition (PB
competition for short) had two tracks: one for the decision problem and another
one for the optimization problem. Therefore, beyond the requirements inher-
ent to any competition of a specific kind of solver, the evaluation framework was
immediately faced to a few more requirements to support different kinds of prob-
lems as well as different kinds of solvers. This section lists the main requirements
that evaluation must fulfill.

Support for partial answers: In the optimization track of the PB competition,
the ultimate goal is to find the optimal value of the objective function, and prove
that it is actually optimal (“OPT” answer) within the given time limit. However,
proving optimality is generally hard and the solver may reach the timeout before
it can claim that it has proved optimality. In order to be able to compare solvers
which have not been able to give the definitive answer “OPT” within the time
limit, it was necessary to be able to interrupt the solvers in a way that allowed
them to give the best (partial) answer they had found so far. The implemented
solution was to send a SIGTERM signal to the solver to warn it that the time
limit was reached, and give the solver a few more seconds to give the best answer
it had found that far (in this case, a “SAT” answer indicating that a solution
was found, but this solution is not necessarily optimal). Once the grace period
is expired, the solver is sent a SIGKILL signal to terminate it. This solution
assumes that the solver can intercept the SIGTERM signal, which is easy in
most languages. However, this interception is impossible in a few languages such
as Java. Fortunately, Java offers a hook to call a function before the termination
of the program. Otherwise, solvers must use the time limit parameter provided by
the competition environment and make sure that they will terminate gracefully
before this limit.

Support for incomplete solvers: The next challenge was to add support for in-
complete solvers (local search solvers) in the pseudo-Boolean competition. In
the SAT competition (and more generally for a decision problem), support for
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incomplete solvers is straightforward because the solver stops as soon as it finds
a solution. Therefore, the only difference between a complete and incomplete
solvers appears on unsatisfiable instances, where incomplete solvers will reach
the time limit without providing an answer1.

The situation is more complicated in the PB competition (and more generally
for an optimization problem) because an incomplete solver will keep searching
for a better solution until it reaches the timeout. In order to be able to compare
incomplete and complete solvers, it is necessary to get the value of the best
solution they found and also, the time used to find this solution. Of course, the
competition cannot trust any timing given by the solver. The solution was to
require the solver to print a specific line each time it finds a better solution, and
let the competition environment timestamp each of these lines. The time required
to find the best solution found by the solver (without proving optimality) is
called T1 in the evaluation framework and allows to compare both complete and
incomplete solvers on a common basis.

This approach also allowed to obtain for free a plot of the value of the ob-
jective function of the solver current solution, as a function of time. Such a
graph gives precious information on the convergence of the solver toward the
best solution.

Support for different categories: Basically, a SAT solver is able to solve any kind
of CNF. Even if it is specialized for a category of instances such as random ones,
it is still able to read instances encoding concrete applications even if in practice,
it is unlikely to be able to solve it. In the PB and CSP world for example, the
situation is different. Not all PB solvers are able to deal with both decision
and optimization problems, with both coefficients which fit in a regular 32 bits
integer and coefficients that require arbitrary precision arithmetic, with both
linear and non-linear constraints. In the same spirit, CSP solvers are not all able
to deal with both extensional constraints, intentional constraints and any kind
of global constraint.

Therefore, the environment must support different categories of instances
defined upon the characteristics of their constraints. Solvers are registered by
their authors in one or more of these categories, which indicates that these solvers
are technically able to parse and solve these instances. In the PB competition,
there are currently up to 8 categories in each of the 2 tracks.

In the CSP world, dealing with global constraints is a challenge of its own.
There are several hundreds of global constraints defined, and many solvers imple-
ment only a few of them. It is almost impossible to define in advance categories
of instances based on the kind of global constraints they contain: this would
require enumerating all subsets of the global constraints appearing in the test
set, which would not make sense. The proposed solution here is to define a spe-
cial “UNSUPPORTED” answer that indicates that a solver has no support for
a kind of constraint present in an instance. This allows to identify cluster of

1 Some incomplete solvers may however answer UNSAT in some cases

Behind the Scene of Solvers Competitions: the ”evaluation” Experience

COMPARE 2012 68



solvers which are able to solve the same kinds of constraints and compare them
on a common basis.

Verification of answers: One of the most fundamental requirement of a com-
petition framework is to verify the answer given by a solver. Indeed, probably
one of the major contribution of a competition is to enhance the global quality
of solvers by eliminating incorrect solvers during the competition, which is a
strong incentive for writing correct solvers! This verification requires that the
solver generates a certificate that is checked by the competition framework.

Ideally, this certificate must be cheap to generate, and cheap to verify. This
is generally the case for positive answers of a decision problem. For instance,
in most cases, a SAT solver can easily print the model that satisfies the CNF.
In contrast, certificates for UNSAT answers are much harder to generate and
to check, and is the subject of a specific competition. The only check that is
performed for UNSAT answers is to verify that no other solver found a solution.
The situation is similar for OPT answers, and the only check performed is to
verify that no other solver found a better solution.

The MUS (Minimally Unsatisfiable Subset) competition is a specific case.
Certificates are easily generated (they are merely a list of clauses that form a
MUS) but harder to verify since it must be checked that the MUS is unsatisfi-
able and that each proper subset is satisfiable. The evaluation framework was
extended in 2011 to verify these certificates in a post-processing step.

Data recording: A job is a run of a given solver on one instance. During a
competition, it is not uncommon that some jobs do not run correctly, either
because of problems with the solver or because of problems in the environment
(lack of space on /tmp, interactions with processes left running on the host, ...).
It is highly desirable to collect a maximum of information on the jobs in order
to be able to analyze what actually happened once a problem is detected. In a
sense, we need a kind of flight recorder for solvers.

The evaluation system stores a lot of information on the job: the host con-
figuration, the solvers parameters, the instance characteristics and the output
of the solver. Besides, runsolver regularly saves information on the processes
started by the solver. In most cases, this is sufficient to identify problems, in
which case jobs just have to be run again. Sometimes, some solvers generate
tens of gigabytes of output. To protect itself, the environment must limit the
size of the solver output. This is done by runsolver which preserves the start and
the end of the output. The size limit must be chosen with care because some
certificates are huge (e.g. > 16 GB).

Some verifications can be done by the competition organizers, but the ulti-
mate verification can only be done by the solver authors, who are the only ones
to know exactly how their solver should behave. This is the reason why all the
collected data are made available to the authors before the results of the com-
petition are published, so that they can detect problems that would otherwise
remain undetected.
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Miscellaneous requirements: A first requirement is that the competition frame-
work should have as little interaction as possible with the solver and especially
ensure that nothing slows down the solver. Unfortunately, the only way to ensure
this would be to run the solver on a non preemptive operating system, which is
incompatible with the normal use of a cluster.

In practice, the solver is run on a traditional Unix system, under the moni-
toring of runsolver. This monitoring process necessarily interferes with the solver
(access to main memory and to the processor cache, small consumption of CPU
time) but the interference is limited [2] and the benefits of runsolver exceed its
drawbacks.

Another point is that solvers running on different hosts should not interfere,
which may happen when instances are read on a network file system. For this
reason, the evaluation framework first copies both instances and the solver bi-
naries from the network to a local disk (/tmp) and then starts the solver with
every generated data stored on the local disk.

To be sure that the instance is correctly copied to the local disk, and that the
correct version of the solver is used, a checksum of each copied file is generated
and checked against the fingerprint stored in the database.

At last, the environment allows the solver to report additional information
(such as the number of nodes, the number of checks,...) which are recorded by
the system.

Parallel solver support: More and more solvers are now designed to use the
multicores processors which are available on each machine since several years.
The environment must obviously record the wall clock time (WC time) and the
CPU time of the solver (see section 4.3) but it must also be able to allocate a
subset of the cores to the solver (see section 4.1). When a solver is not allocated
the complete set of cores available on a host, the system must ensure that only
instances of the same solver will run on that host, in order to at least avoid
interferences between two solvers designed by different authors.

3 General architecture

In order to ensure privilege separation, the evaluation system is implemented as
a client/server system. The server manages the dialog with the database and the
log file. It is also in charge of granting a job to each client as well as receiving the
job results, checking that the solver answer is consistent with the other answers
on the same instance, and recording the results in the database.

The client is in charge of receiving a job from the server, copying the solver
and the instance to the local disk (/tmp), construct the solver command line and
call runsolver to monitor the solver execution. runsolver stores its data in files
on the local disk. At the end of the solver execution, the client runs a verifier
program to check the certificate given by the solver. At last, the client copies
the files generated by runsolver on the local disk to a central directory shared
on the network, and reports the results to the server.
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The client is also in charge of allocating the cores to the solver, and ensuring
that only instances of the same solver are run in parallel on a node.

The last part of the evaluation system deals with the visualization of the
results by the users. This part is currently implemented in PHP. Unfortunately,
online generation of pages from the databases is too inefficient (the database is
several tens of GB large because it contains the results of many competitions).
Therefore, HTML pages are generated in advance and stored in a cache. The
drawback of this system is that it limits the number of pages that can be gen-
erated, because each of them must be stored on the web server (in compressed
form). A new system is planned where the generation of web pages would be
done by the browser, which would allow more interaction with the user.

4 Resources Allocation and Limits Enforcement

In this section, we detail the problem of allocating resources to both sequential
and parallel solvers in a way that is both efficient and as fair as possible.

4.1 Allocation of Cores

The problem of allocating cores to solvers appears when a cluster of nodes with
multicores processors is used, which is always the case with recent hardware. The
nodes in the cluster used by evaluation have two quad-core processors and 32
GB RAM. Obviously, it is highly desirable to optimize the use of the cluster and
run concurrently as many solvers as possible on one host. On the other hand, it
is also highly desirable to obtain results that are both reproducible and do not
depend on external factors such as the other processes running on the system.
Besides, if several solvers are run in parallel, we want to measure times that
are almost equivalent to the ones of a solver running alone on the same host.
Unfortunately, these objectives are contradictory. As soon as several programs
are running in parallel (including the runsolver process monitoring the solver),
they necessarily compete for access to main memory and more importantly to
the various cache levels of the processor.

Some experimentation performed on Minisat, indicated that running 8 se-
quential solvers in parallel (one core allocated to each solver) induced a 35 %
time penalty in average, running 4 sequential solvers concurrently on a node (2
cores allocated per solver) implied a 16% penalty in average and at last running
2 sequential solvers concurrently on a node (4 cores allocated per solver) implied
almost no penalty (0.4 %) in comparison of running one single sequential solver
per node.

In the SAT 2011 competition, it was decided to run 4 sequential solvers in
parallel (2 cores per solver) during phase 1 which is used to select the solvers
which can enter the second phase. In phase 2 which is the one actually used
for ranking solvers, only 2 sequential solvers were run in parallel on a node
(4 cores per solver). Parallel solvers where allocated 4 cores in phase 1 (two
solver running in parallel on a node) and 8 cores in phase 2 (only one solver per
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node). As explained previously, evaluation ensured that only instances of the
same solver were run in parallel on a given host.

Clearly, a balance must be found between the precision of the time measure-
ments and the number of solvers run in parallel on the cluster. Given the time
constraints and the number of solvers submitted to a competition such as the
SAT competition, there is little hope to have enough computing resources to
afford running one single solver per node in any case.

4.2 Allocation of Memory

Once the policy for allocating cores to solvers is decided, one must decide of the
policy for allocating memory to solvers. The basic policy is to reserve a fraction of
RAM to the system and to share equally the rest of memory between the solvers
running in parallel. Solvers are not allowed to swap on disk, because this kills
the hardware and most importantly gives times which are only representative of
the hard disk performances. As an example, solvers in the SAT 2011 competition
were allowed to use 31GB divided by the number of concurrent solvers. In phase
1, this amounts to 7.7 GB for sequential solvers and 15.5 GB for parallel solvers.
In phase 2, this amounts to 15.5 GB for sequential solvers and 31 GB for parallel
solvers. Given policy on core allocation, parallel solvers were allocated twice the
memory of a sequential solver!

This looks clearly unfair at first, and actually it is, but on the other hand,
parallel solvers necessarily need more memory than sequential solvers. Hence,
enforcing the same limit would not be fair either! Clearly, we believe that there
is no way to be absolutely fair regarding memory allocation for sequential and
parallel solvers. The policy chosen in that competition is not perfect, but can be
seen as an indirect way to encourage the development of parallel solvers.

4.3 Allocation of Time

In computer science, there are mainly two distinct notions of time: wall clock
time and CPU time. The wall clock time (WC time for short) is the real time
that elapses between the start and the end of a computing task. The CPU time is
the time during which instructions of the program are executed by a processing
unit. On a host with a single processing unit, CPU time and wall clock time are
equal as long as the system does not interrupt the program. As soon as a time-
sharing system is used on a single processing unit, wall clock time will usually
be greater than CPU time, because during some time slices the processor will be
allocated to another program. On a host with n processing units, if the program
is able to use efficiently each of these units and is not interrupted by the system,
the CPU time will be equal to n times the wall clock time. Generally speaking,
the CPU time is a good measure of the computing effort, while wall clock time
corresponds to the user’s perception of the program efficiency.

For sequential solvers, there’s a clear agreement that CPU time is the right
measure of efficiency since it allows to mostly abstract from the perturbation
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caused by the computing environment. For parallel solvers, two different points
of view exist.

The first point of view is to consider that only the wall clock time matters,
which amounts to considering that CPU resources come for free. This might
make sense on a desktop computer where the different cores are idle most of
the time. However, this leads to approaches which perform redundant computa-
tions, such as some portfolio approaches, and clearly waste computing resources.
Besides, the assumption that cores come for free does not make sense in larger
environments such as clusters or clouds. Each core must be used efficiently.

The second point of view also consider wall clock time but actually puts the
emphasis on CPU time. The motivation is that we expect the parallel solver to
distribute the computations equally on the different cores and avoid any redun-
dant computation. Therefore, the CPU time used by a parallel solver should not
be significantly greater than the CPU time of a sequential solver and the wall
clock time of the parallel solver should tend toward the CPU time of the sequen-
tial solver divided by the number of cores. Of course, it is well known that this
perfect result cannot be obtained because a parallel solver faces problems that
the sequential solver doesn’t: synchronization problems, contention on memory
access,...

In 2009, there has been strong discussions between the organizers of the SAT
competition about which point of view should be taken by the competition. In the
end, it was decided to put the emphasis on CPU time in order to encourage the
community to use efficiently the available cores and also to be able to compare
sequential and parallel solvers on a common basis. This lead to enforcing the
same CPU limits for both sequential and parallel solvers. In the end, this was
unsatisfactory because it showed only one side of the comparison and completely
hid the wall clock time information.

In 2011, it was decided to be more neutral and in fact adopt both point
of views. Therefore, two different rankings were set up: a CPU ranking and a
WC ranking. The WC ranking is based on wall clock time and was expected to
promote solvers which use all available resources to give an answer as quickly as
possible. In this ranking, timeout is imposed on the wall clock time. The CPU
ranking is based on CPU time and was expected to promote solvers which use
resources as efficiently as possible. In this ranking, timeout is imposed on CPU
time.

Besides, it was decided to organize only one track mixing both sequential
and parallel solvers. Indeed, there’s no actual reason to differentiate sequential
or parallel solvers. The only thing that matters is their performances, either in
CPU time or in WC time. It was expected that parallel solvers would perform
better in the WC ranking while sequential solvers would perform better in the
CPU ranking. Mixing the two kinds of solvers in a same ranking, either CPU or
WC based, allows a mostly fair comparison. If a parallel solver does not perform
better than a sequential solver in the WC ranking, there is no point in using it.
Conversely, if a sequential solver does not perform better than a parallel solver
in the CPU ranking, there is no point in using it.
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For a chosen timeout To and a number n of available cores, the idea was to
have a CPU ranking with a limit on CPU time set to To and a WC ranking
with a limit on WC time set to To. Obviously, it was essential to run one single
experiment to get both information. Therefore, sequential solvers were run with
a CPU limit of To and parallel solvers were run with a CPU limit of n.To. Since
the operating system may suspend the solver execution for some time, we have
to select a WC limit which is slightly greater than To, otherwise it might be
impossible to reach the CPU limit in some cases. Generally speaking, the CPU
limit is considered more reliable than the WC limit because it presumably does
not depend on the other processes running on the system. A post-processing of
the results enforces the same CPU or WC limit to generate the CPU and WC
rankings respectively.

Choosing the right WC limit for the ranking is actually extremely difficult.
On the one hand, it is clear for sequential solvers that the WC limit should be
slightly larger than To, let’s say To + ε. The value of ε can be chosen relatively
large because it is only used to compensate delays that are not caused by the
solver. On the other hand, for parallel solvers, it makes more sense to set the
WC limit to be equal to To. Otherwise, a solver that uses all n cores will hit
the CPU limit set to n.To after a WC time only slightly greater than To, but a
solver that leaves some core idle may never hit the CPU limit and only hit the
WC limit To + ε. If ε is large, this would imply that inefficient parallel solvers
would be granted more WC clock time than efficient parallel solvers. Here, the
choice of ε compensate delays that are caused in part by the solver itself and
therefore should tend to 0.

As an example, in the second phase of the 2011 competition, the experiments
were performed with a WC limit set to 5100 s for all solvers. Sequential solvers
were allowed to use 5000 s CPU time and parallel solvers on 8 cores had a limit
set to 40,000 s CPU time. Results were post-processed to enforce a CPU and
WC limit of 5000 s for the CPU ranking and a CPU limit of 40,000 s and a WC
limit of 5000 s for the WC ranking.

4.4 Enforcing limits

Once resources are allocated to the solvers, limits on these resources must be
enforced. This task is not as obvious as it seems. One important problem is
that the most straightforward command for measuring the time of a program
(the time(1) command) frequently fails for solvers running multiple processes,
which occurs as soon as a shell script is used to start the solver. Indeed, this
command uses times(2) to display the time statistics of the solver. However,
this system call only returns the “resources used by those of its children that
have terminated and have been waited for”. This implies that if, for some reason,
the parent process doesn’t call wait(2), the resources used by the child will be
ignored. This also means that these commands cannot enforce reliable limits for
multi-process solvers because the resources used by the child are only reported
when it terminates.
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runsolver was designed to avoid this trap, as well as some others, and im-
plements several other requirements presented at the beginning of this article.
A detailed description of runsolver is out of the scope of this paper, but can be
found in [2]. We only present here its main characteristics.

runsolver is a Linux specific program and is freely available under the Gnu
Public License from http://www.cril.univ-artois.fr/~roussel/runsolver.
Basically, runsolver can be seen as the integration of ulimit(1), time(1) and ps(1)
with several improvements. It is called with the command line of the solver to
run, and parameters specifying the various limits. Once runsolver has launched
the solver, it periodically monitors the time and memory consumption of the
solver processes by fetching the relevant information from the /proc filesystem
and summing the resource usages2. Sanity checks are performed to identify cases
where a parent did not wait for its child. As soon as the solver reaches a resource
limit, it is gracefully stopped. Process or thread creation or deletion by the solver
are also monitored. Periodically, the list of processes run by the solver is saved
in a log file in order to allow a post-mortem analysis of what happened.

Each line printed by the solver can be timestamped to identify how much
CPU and wall clock time elapsed since the start of the solver. This is a very
convenient feature that allows to learn for example how long the solver took
to parse the instance or to learn at what time the solver improved its current
solution (for optimization problems).

At last, runsolver is able to allocate to a solver a given subset of the host
cores (with sched setaffinity(2)) and is able to deal with solvers that generate a
huge amount of output (sometimes several tens of GB) by storing only the start
and the end of its output.

Since runsolver was designed to avoid requiring any root privilege, it runs
as a regular program and slightly compete with the solver for CPU usage and
memory access. However, the resources used by runsolver are very limited and
the perturbation is negligible (see [2]).

5 Rankings

The most visible aspect of a competition is to produce a ranking of solvers, but
it should be emphasized that such a ranking can only represent one point of
view.

Indeed, there are many different ways to look at solvers, and different users
generally have different points of views on the comparison of solvers. One point
of view is to consider that the solver able to answer on the greatest number
of instances is the best one. This is the point of view adopted in several com-
petitions. It has the advantage to be simple and effective, but of course it is
somewhat over-simplified. One may also want to consider the number of solved
instances in each family, and prefer solvers which have either a balanced number
of solved instances in each family, or inversely prefer solvers which solve the most

2 Memory of threads of a same process is not added, since they share the same address
space.
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instances in the family of interest to the user. Some users consider the integration
of the solver into a wider system and prefer a fast solver to a solver answering
more often but which is slower in average. They may also prefer solvers using in
average less memory than competitors with similar results.

Alternatively, one may wish to give an advantage to solvers which use new
techniques that are the only ones able to solve some instances. Indeed, the purse
scoring [4] integrates this point of view. For each instance, a purse of points is
divided between the solvers that gave an answer. When only a few solvers are
able to solve an instance, they gain more points. This system has interesting
properties, but also some drawbacks (the score of a solver depends on the other
solvers for example). Several other scoring methods have been proposed [5,6],
each with their own pros and cons.

Several other aspects could or should be taken into account in the rankings.
The robustness of a solver, that is, its ability to solve an instance which is close
to an instance that it already solves (for example instances obtained by shuffling
constraints and variables) is a desirable feature. Determinism, that is, the ability
to give the same answer in approximately the same time when the solver is run on
the same instance several times, is a feature which is important for the adoption
of solvers in industrial applications.

Clearly, there are many criteria to compare solvers and expecting to integrate
all these criteria into one single ranking is just an utopia. Therefore, one must
accept that a competition ranking is just a way to attract contestants, but that
it cannot summarize all the details of the picture taken by the competition.

As a last illustration of this point, let us consider the situation of sequential
and parallel solvers. It is clear that sequential solvers must be compared on CPU
time. Regarding parallel solvers, WC time is clearly an important parameter.
Some users consider that the cores present on their computer come for free and
disregard CPU time. In our opinion, this is a mistake. CPU time is a resource of
its own, which becomes obvious when the solver is integrated into a larger system.
The solution adopted in the SAT 2011 competition is to compare solvers on the
two criteria: CPU and WC time, without separating sequential and parallel
solvers. This generates a CPU ranking and a WC ranking in which each solver
appears. The rationale is that, a parallel solver is of no interest if it does not
outperform a sequential solver in WC time, and conversely a sequential solver is
of no interest if it does not outperform a parallel solver in CPU time. In practice,
it has been actually observed that sequential solvers outperformed some parallel
solvers in the WC ranking and that parallel solvers outperformed some sequential
solvers in the CPU ranking.

6 Conclusion

This paper presented the principles that governed several competitions (PB,
SAT, CSP, MUS,...). It can be seen that several issues must be solved during
a competition. Several points are open to discussion. Nevertheless, in the end,
organizers must choose their own policy. It should be remembered that a com-
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petition does not generate an absolute truth: it merely generates a lot of data
that can be analyzed in different ways by the community and that contribute to
the improvement of solvers, which is the sole actual goal of a competition.
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